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Tianshou, Release 0.2.1

Tianshou () is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning
libraries, which are mainly based on TensorFlow, have many nested classes, unfriendly API, or slow-speed, Tianshou
provides a fast-speed framework and pythonic API for building the deep reinforcement learning agent. The supported
interface algorithms include:

• PGPolicy Policy Gradient

• DQNPolicy Deep Q-Network

• DQNPolicy Double DQN with n-step returns

• A2CPolicy Advantage Actor-Critic

• DDPGPolicy Deep Deterministic Policy Gradient

• PPOPolicy Proximal Policy Optimization

• TD3Policy Twin Delayed DDPG

• SACPolicy Soft Actor-Critic

Tianshou supports parallel workers for all algorithms as well. All of these algorithms are reformatted as replay-buffer
based algorithms.
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CHAPTER

ONE

INSTALLATION

Tianshou is currently hosted on PyPI. You can simply install Tianshou with the following command:

pip3 install tianshou -U

You can also install with the newest version through GitHub:

pip3 install git+https://github.com/thu-ml/tianshou.git@master

After installation, open your python console and type

import tianshou as ts
print(ts.__version__)

If no error occurs, you have successfully installed Tianshou.

1.1 Deep Q Network

Deep reinforcement learning has achieved significant successes in various applications. Deep Q Network (DQN)
[MKS+15] is the pioneer one. In this tutorial, we will show how to train a DQN agent on CartPole with Tianshou step
by step. The full script is at test/discrete/test_dqn.py.

Contrary to existing Deep RL libraries such as RLlib, which could only accept a config specification of hyperparame-
ters, network, and others, Tianshou provides an easy way of construction through the code-level.

1.1.1 Make an Environment

First of all, you have to make an environment for your agent to interact with. For environment interfaces, we follow
the convention of OpenAI Gym. In your Python code, simply import Tianshou and make the environment:

import gym
import tianshou as ts

env = gym.make('CartPole-v0')

CartPole-v0 is a simple environment with a discrete action space, for which DQN applies. You have to identify
whether the action space is continuous or discrete and apply eligible algorithms. DDPG [LHP+16], for example,
could only be applied to continuous action spaces, while almost all other policy gradient methods could be applied to
both, depending on the probability distribution on the action.
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1.1.2 Setup Multi-environment Wrapper

It is available if you want the original gym.Env:

train_envs = gym.make('CartPole-v0')
test_envs = gym.make('CartPole-v0')

Tianshou supports parallel sampling for all algorithms. It provides three types of vectorized environment wrapper:
VectorEnv , SubprocVectorEnv , and RayVectorEnv . It can be used as follows:

train_envs = ts.env.VectorEnv([lambda: gym.make('CartPole-v0') for _ in range(8)])
test_envs = ts.env.VectorEnv([lambda: gym.make('CartPole-v0') for _ in range(100)])

Here, we set up 8 environments in train_envs and 100 environments in test_envs.

For the demonstration, here we use the second block of codes.

1.1.3 Build the Network

Tianshou supports any user-defined PyTorch networks and optimizers but with the limitation of input and output API.
Here is an example code:

import torch, numpy as np
from torch import nn

class Net(nn.Module):
def __init__(self, state_shape, action_shape):

super().__init__()
self.model = nn.Sequential(*[

nn.Linear(np.prod(state_shape), 128), nn.ReLU(inplace=True),
nn.Linear(128, 128), nn.ReLU(inplace=True),
nn.Linear(128, 128), nn.ReLU(inplace=True),
nn.Linear(128, np.prod(action_shape))

])
def forward(self, obs, state=None, info={}):

if not isinstance(obs, torch.Tensor):
obs = torch.tensor(obs, dtype=torch.float)

batch = obs.shape[0]
logits = self.model(obs.view(batch, -1))
return logits, state

state_shape = env.observation_space.shape or env.observation_space.n
action_shape = env.action_space.shape or env.action_space.n
net = Net(state_shape, action_shape)
optim = torch.optim.Adam(net.parameters(), lr=1e-3)

The rules of self-defined networks are:

1. Input: observation obs (may be a numpy.ndarray or torch.Tensor), hidden state state (for RNN
usage), and other information info provided by the environment.

2. Output: some logits and the next hidden state state. The logits could be a tuple instead of a torch.
Tensor. It depends on how the policy process the network output. For example, in PPO [SWD+17], the return
of the network might be (mu, sigma), state for Gaussian policy.

4 Chapter 1. Installation
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1.1.4 Setup Policy

We use the defined net and optim, with extra policy hyper-parameters, to define a policy. Here we define a DQN
policy with using a target network:

policy = ts.policy.DQNPolicy(net, optim,
discount_factor=0.9, estimation_step=3,
use_target_network=True, target_update_freq=320)

1.1.5 Setup Collector

The collector is a key concept in Tianshou. It allows the policy to interact with different types of environments
conveniently. In each step, the collector will let the policy perform (at least) a specified number of steps or episodes
and store the data in a replay buffer.

train_collector = ts.data.Collector(policy, train_envs, ts.data.
→˓ReplayBuffer(size=20000))
test_collector = ts.data.Collector(policy, test_envs)

1.1.6 Train Policy with a Trainer

Tianshou provides onpolicy_trainer and offpolicy_trainer. The trainer will automatically stop training
when the policy reach the stop condition stop_fn on test collector. Since DQN is an off-policy algorithm, we use
the offpolicy_trainer as follows:

result = ts.trainer.offpolicy_trainer(
policy, train_collector, test_collector,
max_epoch=10, step_per_epoch=1000, collect_per_step=10,
episode_per_test=100, batch_size=64,
train_fn=lambda e: policy.set_eps(0.1),
test_fn=lambda e: policy.set_eps(0.05),
stop_fn=lambda x: x >= env.spec.reward_threshold,
writer=None)

print(f'Finished training! Use {result["duration"]}')

The meaning of each parameter is as follows:

• max_epoch: The maximum of epochs for training. The training process might be finished before reaching the
max_epoch;

• step_per_epoch: The number of step for updating policy network in one epoch;

• collect_per_step: The number of frames the collector would collect before the network update. For
example, the code above means “collect 10 frames and do one policy network update”;

• episode_per_test: The number of episodes for one policy evaluation.

• batch_size: The batch size of sample data, which is going to feed in the policy network.

• train_fn: A function receives the current number of epoch index and performs some operations at the be-
ginning of training in this epoch. For example, the code above means “reset the epsilon to 0.1 in DQN before
training”.

• test_fn: A function receives the current number of epoch index and performs some operations at the be-
ginning of testing in this epoch. For example, the code above means “reset the epsilon to 0.05 in DQN before
testing”.

1.1. Deep Q Network 5
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• stop_fn: A function receives the average undiscounted returns of the testing result, return a boolean which
indicates whether reaching the goal.

• writer: See below.

The trainer supports TensorBoard for logging. It can be used as:

from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter('log/dqn')

Pass the writer into the trainer, and the training result will be recorded into the TensorBoard.

The returned result is a dictionary as follows:

{
'train_step': 9246,
'train_episode': 504.0,
'train_time/collector': '0.65s',
'train_time/model': '1.97s',
'train_speed': '3518.79 step/s',
'test_step': 49112,
'test_episode': 400.0,
'test_time': '1.38s',
'test_speed': '35600.52 step/s',
'best_reward': 199.03,
'duration': '4.01s'

}

It shows that within approximately 4 seconds, we finished training a DQN agent on CartPole. The mean returns over
100 consecutive episodes is 199.03.

1.1.7 Save/Load Policy

Since the policy inherits the torch.nn.Module class, saving and loading the policy are exactly the same as a torch
module:

torch.save(policy.state_dict(), 'dqn.pth')
policy.load_state_dict(torch.load('dqn.pth'))

1.1.8 Watch the Agent’s Performance

Collector supports rendering. Here is the example of watching the agent’s performance in 35 FPS:

collector = ts.data.Collector(policy, env)
collector.collect(n_episode=1, render=1 / 35)
collector.close()

6 Chapter 1. Installation
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1.1.9 Train a Policy with Customized Codes

“I don’t want to use your provided trainer. I want to customize it!”

No problem! Tianshou supports user-defined training code. Here is the usage:

# pre-collect 5000 frames with random action before training
policy.set_eps(1)
train_collector.collect(n_step=5000)

policy.set_eps(0.1)
for i in range(int(1e6)): # total step

collect_result = train_collector.collect(n_step=10)

# once if the collected episodes' mean returns reach the threshold,
# or every 1000 steps, we test it on test_collector
if collect_result['rew'] >= env.spec.reward_threshold or i % 1000 == 0:

policy.set_eps(0.05)
result = test_collector.collect(n_episode=100)
if result['rew'] >= env.spec.reward_threshold:

print(f'Finished training! Test mean returns: {result["rew"]}')
break

else:
# back to training eps
policy.set_eps(0.1)

# train policy with a sampled batch data
losses = policy.learn(train_collector.sample(batch_size=64))

For further usage, you can refer to Tabular Q Learning Implementation.

References

1.2 Basic concepts in Tianshou

Tianshou splits a Reinforcement Learning agent training procedure into these parts: trainer, collector, policy, and data
buffer. The general control flow can be described as:

1.2. Basic concepts in Tianshou 7
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1.2.1 Data Batch

Tianshou provides Batch as the internal data structure to pass any kind of data to other methods, for example, a
collector gives a Batch to policy for learning. Here is the usage:

>>> import numpy as np
>>> from tianshou.data import Batch
>>> data = Batch(a=4, b=[5, 5], c='2312312')
>>> data.b
[5, 5]
>>> data.b = np.array([3, 4, 5])
>>> len(data.b)
3
>>> data.b[-1]
5

In short, you can define a Batch with any key-value pair. The current implementation of Tianshou typically use 6
keys in Batch:

• obs the observation of step 𝑡 ;

• act the action of step 𝑡 ;

• rew the reward of step 𝑡 ;

• done the done flag of step 𝑡 ;

• obs_next the observation of step 𝑡+ 1 ;

• info the info of step 𝑡 (in gym.Env, the env.step() function return 4 arguments, and the last one is info);

Batch has other methods, including __getitem__(), __len__(), append(), and split():

>>> data = Batch(obs=np.array([0, 11, 22]), rew=np.array([6, 6, 6]))
>>> # here we test __getitem__
>>> index = [2, 1]
>>> data[index].obs

(continues on next page)
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(continued from previous page)

array([22, 11])

>>> # here we test __len__
>>> len(data)
3

>>> data.append(data) # similar to list.append
>>> data.obs
array([0, 11, 22, 0, 11, 22])

>>> # split whole data into multiple small batch
>>> for d in data.split(size=2, permute=False):
... print(d.obs, d.rew)
[ 0 11] [6 6]
[22 0] [6 6]
[11 22] [6 6]

1.2.2 Data Buffer

ReplayBuffer stores data generated from interaction between the policy and environment. It stores basically 6
types of data, as mentioned in Batch, based on numpy.ndarray. Here is the usage:

>>> from tianshou.data import ReplayBuffer
>>> buf = ReplayBuffer(size=20)
>>> for i in range(3):
... buf.add(obs=i, act=i, rew=i, done=i, obs_next=i + 1, info={})
>>> len(buf)
3
>>> buf.obs
# since we set size = 20, len(buf.obs) == 20.
array([0., 1., 2., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0., 0., 0., 0.])

>>> buf2 = ReplayBuffer(size=10)
>>> for i in range(15):
... buf2.add(obs=i, act=i, rew=i, done=i, obs_next=i + 1, info={})
>>> len(buf2)
10
>>> buf2.obs
# since its size = 10, it only stores the last 10 steps' result.
array([10., 11., 12., 13., 14., 5., 6., 7., 8., 9.])

>>> # move buf2's result into buf (meanwhile keep it chronologically)
>>> buf.update(buf2)
array([ 0., 1., 2., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14.,

0., 0., 0., 0., 0., 0., 0.])

>>> # get a random sample from buffer
>>> # the batch_data is equal to buf[incide].
>>> batch_data, indice = buf.sample(batch_size=4)
>>> batch_data.obs == buf[indice].obs
array([ True, True, True, True])

Tianshou provides other type of data buffer such as ListReplayBuffer (based on list),
PrioritizedReplayBuffer (based on Segment Tree and numpy.ndarray). Check out ReplayBuffer

1.2. Basic concepts in Tianshou 9
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for more detail.

1.2.3 Policy

Tianshou aims to modularizing RL algorithms. It comes into several classes of policies in Tianshou. All of the policy
classes must inherit BasePolicy .

A policy class typically has four parts:

• __init__(): initialize the policy, including coping the target network and so on;

• __call__(): compute action with given observation;

• process_fn(): pre-process data from the replay buffer (this function can interact with replay buffer);

• learn(): update policy with a given batch of data.

Take 2-step return DQN as an example. The 2-step return DQN compute each frame’s return as:

𝐺𝑡 = 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2 max
𝑎

𝑄(𝑠𝑡+2, 𝑎)

where 𝛾 is the discount factor, 𝛾 ∈ [0, 1]. Here is the pseudocode showing the training process without Tianshou
framework:

# pseudocode, cannot work
s = env.reset()
buffer = Buffer(size=10000)
agent = DQN()
for i in range(int(1e6)):

a = agent.compute_action(s)
s_, r, d, _ = env.step(a)
buffer.store(s, a, s_, r, d)
s = s_
if i % 1000 == 0:

b_s, b_a, b_s_, b_r, b_d = buffer.get(size=64)
# compute 2-step returns. How?
b_ret = compute_2_step_return(buffer, b_r, b_d, ...)
# update DQN policy
agent.update(b_s, b_a, b_s_, b_r, b_d, b_ret)

Thus, we need a time-related interface for calculating the 2-step return. process_fn() finishes this work by
providing the replay buffer, the sample index, and the sample batch data. Since we store all the data in the order of
time, you can simply compute the 2-step return as:

class DQN_2step(BasePolicy):
"""some code"""

def process_fn(self, batch, buffer, indice):
buffer_len = len(buffer)
batch_2 = buffer[(indice + 2) % buffer_len]
# this will return a batch data where batch_2.obs is s_t+2
# we can also get s_t+2 through:
# batch_2_obs = buffer.obs[(indice + 2) % buffer_len]
# in short, buffer.obs[i] is equal to buffer[i].obs, but the former is more

→˓effecient.
Q = self(batch_2, eps=0) # shape: [batchsize, action_shape]
maxQ = Q.max(dim=-1)
batch.returns = batch.rew \

(continues on next page)
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(continued from previous page)

+ self._gamma * buffer.rew[(indice + 1) % buffer_len] \
+ self._gamma ** 2 * maxQ

return batch

This code does not consider the done flag, so it may not work very well. It shows two ways to get 𝑠𝑡+2 from the replay
buffer easily in process_fn().

For other method, you can check out tianshou.policy. We give the usage of policy class a high-level explanation in A
High-level Explanation.

1.2.4 Collector

The Collector enables the policy to interact with different types of environments conveniently. In short,
Collector has two main methods:

• collect(): let the policy perform (at least) a specified number of step n_step or episode n_episode and
store the data in the replay buffer;

• sample(): sample a data batch from replay buffer; it will call process_fn() before returning the final
batch data.

Why do we mention at least here? For a single environment, the collector will finish exactly n_step or n_episode.
However, for multiple environments, we could not directly store the collected data into the replay buffer, since it breaks
the principle of storing data chronologically.

The solution is to add some cache buffers inside the collector. Once collecting a full episode of trajectory, it will
move the stored data from the cache buffer to the main buffer. To satisfy this condition, the collector will interact with
environments that may exceed the given step number or episode number.

The general explanation is listed in A High-level Explanation. Other usages of collector are listed in Collector
documentation.

1.2.5 Trainer

Once you have a collector and a policy, you can start writing the training method for your RL agent. Trainer, to be
honest, is a simple wrapper. It helps you save energy for writing the training loop. You can also construct your own
trainer: Train a Policy with Customized Codes.

Tianshou has two types of trainer: onpolicy_trainer() and offpolicy_trainer(), corresponding to
on-policy algorithms (such as Policy Gradient) and off-policy algorithms (such as DQN). Please check out tian-
shou.trainer for the usage.

There will be more types of trainers, for instance, multi-agent trainer.

1.2.6 A High-level Explanation

We give a high-level explanation through the pseudocode used in section Policy:

# pseudocode, cannot work # methods in tianshou
s = env.reset()
buffer = Buffer(size=10000) # buffer = tianshou.
→˓data.ReplayBuffer(size=10000)
agent = DQN() # done in policy.__
→˓init__(...)

(continues on next page)
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(continued from previous page)

for i in range(int(1e6)): # done in trainer
a = agent.compute_action(s) # done in policy.__

→˓call__(batch, ...)
s_, r, d, _ = env.step(a) # done in collector.

→˓collect(...)
buffer.store(s, a, s_, r, d) # done in collector.

→˓collect(...)
s = s_ # done in collector.

→˓collect(...)
if i % 1000 == 0: # done in trainer

b_s, b_a, b_s_, b_r, b_d = buffer.get(size=64) # done in collector.
→˓sample(batch_size)

# compute 2-step returns. How?
b_ret = compute_2_step_return(buffer, b_r, b_d, ...) # done in policy.

→˓process_fn(batch, buffer, indice)
# update DQN policy
agent.update(b_s, b_a, b_s_, b_r, b_d, b_ret) # done in policy.

→˓learn(batch, ...)

1.2.7 Conclusion

So far, we go through the overall framework of Tianshou. Really simple, isn’t it?

1.3 Tabular Q Learning Implementation

This tutorial shows how to use Tianshou to develop new algorithms.

1.3.1 Background

TODO

1.4 Train a model-free RL agent within 30s

This page summarizes some hyper-parameter tuning experience and code-level trick when training a model-free DRL
agent.

You can also contribute to this page with your own tricks :)

1.4.1 Avoid batch-size = 1

In the traditional RL training loop, we always use the policy to interact with only one environment for collecting data.
That means most of the time the network use batch-size = 1. Quite inefficient! Here is an example of showing how
inefficient it is:

import torch, time
from torch import nn

class Net(nn.Module):
(continues on next page)
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(continued from previous page)

def __init__(self):
super().__init__()
self.model = nn.Sequential(

nn.Linear(3, 128), nn.ReLU(inplace=True),
nn.Linear(128, 128), nn.ReLU(inplace=True),
nn.Linear(128, 1))

def forward(self, s):
return self.model(s)

net = Net()
cnt = 1000
div = 128
a = torch.randn([128, 3])

t = time.time()
for i in range(cnt):

b = net(a)
t1 = (time.time() - t) / cnt
print(t1)
t = time.time()
for i in range(cnt):

for a_ in a.split(a.shape[0] // div):
b = net(a_)

t2 = (time.time() - t) / cnt
print(t2)
print(t2 / t1)

The first test uses batch-size 128, and the second test uses batch-size = 1 for 128 times. In our test, the first is 70-80
times faster than the second.

So how could we avoid the case of batch-size = 1? The answer is synchronize sampling: we create multiple indepen-
dent environments and sample simultaneously. It is similar to A2C, but other algorithms can also use this method. In
our experiments, sampling from more environments benefits not only the sample speed but also the converge speed of
neural network (we guess it lowers the sample bias).

By the way, A2C is better than A3C in some cases: A3C needs to act independently and sync the gradient to master,
but, in a single node, using A3C to act with batch-size = 1 is quite resource-consuming.

1.4.2 Algorithm specific tricks

Here is about the experience of hyper-parameter tuning on CartPole and Pendulum:

• DQNPolicy: use estimation_step greater than 1 and target network, also with a suitable size of replay buffer;

• PGPolicy: TBD

• A2CPolicy: TBD

• PPOPolicy: TBD

• DDPGPolicy , TD3Policy , and SACPolicy: We found two tricks. The first is to ignore the done flag. The
second is to normalize reward to a standard normal distribution (it is against the theoretical analysis, but indeed
works very well). The two tricks work amazingly on Mujoco tasks, typically with a faster converge speed (1M
-> 200K).

• On-policy algorithms: increase the repeat-time (to 2 or 4) of the given batch in each training update will make
the algorithm more stable.

1.4. Train a model-free RL agent within 30s 13
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1.4.3 Code-level optimization

Tianshou has many short-but-efficient lines of code. For example, when we want to compute 𝑉 (𝑠) and 𝑉 (𝑠′) by the
same network, the best way is to concatenate 𝑠 and 𝑠′ together instead of computing the value function using twice of
network forward.

1.4.4 Finally

With fast-speed sampling, we could use large batch-size and large learning rate for faster convergence.

RL algorithms are seed-sensitive. Try more seeds and pick the best. But for our demo, we just used seed = 0 and found
it work surprisingly well on policy gradient, so we did not try other seed.

1.5 tianshou.data

class tianshou.data.Batch(**kwargs)
Bases: object

Tianshou provides Batch as the internal data structure to pass any kind of data to other methods, for example,
a collector gives a Batch to policy for learning. Here is the usage:

>>> import numpy as np
>>> from tianshou.data import Batch
>>> data = Batch(a=4, b=[5, 5], c='2312312')
>>> data.b
[5, 5]
>>> data.b = np.array([3, 4, 5])
>>> len(data.b)
3
>>> data.b[-1]
5

In short, you can define a Batch with any key-value pair. The current implementation of Tianshou typically
use 6 keys in Batch:

• obs the observation of step 𝑡 ;

• act the action of step 𝑡 ;

• rew the reward of step 𝑡 ;

• done the done flag of step 𝑡 ;

• obs_next the observation of step 𝑡+ 1 ;

• info the info of step 𝑡 (in gym.Env, the env.step() function return 4 arguments, and the last one is
info);

Batch has other methods, including __getitem__(), __len__(), append(), and split():

>>> data = Batch(obs=np.array([0, 11, 22]), rew=np.array([6, 6, 6]))
>>> # here we test __getitem__
>>> index = [2, 1]
>>> data[index].obs
array([22, 11])

(continues on next page)
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(continued from previous page)

>>> # here we test __len__
>>> len(data)
3

>>> data.append(data) # similar to list.append
>>> data.obs
array([0, 11, 22, 0, 11, 22])

>>> # split whole data into multiple small batch
>>> for d in data.split(size=2, permute=False):
... print(d.obs, d.rew)
[ 0 11] [6 6]
[22 0] [6 6]
[11 22] [6 6]

__getitem__(index)
Return self[index].

__len__()
Return len(self).

append(batch)
Append a Batch object to current batch.

split(size=None, permute=True)
Split whole data into multiple small batch.

Parameters

• size (int) – if it is None, it does not split the data batch; otherwise it will divide the
data batch with the given size. Default to None.

• permute (bool) – randomly shuffle the entire data batch if it is True, otherwise remain
in the same. Default to True.

class tianshou.data.ReplayBuffer(size)
Bases: object

ReplayBuffer stores data generated from interaction between the policy and environment. It stores basically
6 types of data, as mentioned in Batch, based on numpy.ndarray. Here is the usage:

>>> from tianshou.data import ReplayBuffer
>>> buf = ReplayBuffer(size=20)
>>> for i in range(3):
... buf.add(obs=i, act=i, rew=i, done=i, obs_next=i + 1, info={})
>>> len(buf)
3
>>> buf.obs
# since we set size = 20, len(buf.obs) == 20.
array([0., 1., 2., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0., 0., 0., 0.])

>>> buf2 = ReplayBuffer(size=10)
>>> for i in range(15):
... buf2.add(obs=i, act=i, rew=i, done=i, obs_next=i + 1, info={})
>>> len(buf2)
10
>>> buf2.obs

(continues on next page)
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(continued from previous page)

# since its size = 10, it only stores the last 10 steps' result.
array([10., 11., 12., 13., 14., 5., 6., 7., 8., 9.])

>>> # move buf2's result into buf (meanwhile keep it chronologically)
>>> buf.update(buf2)
array([ 0., 1., 2., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14.,

0., 0., 0., 0., 0., 0., 0.])

>>> # get a random sample from buffer
>>> # the batch_data is equal to buf[incide].
>>> batch_data, indice = buf.sample(batch_size=4)
>>> batch_data.obs == buf[indice].obs
array([ True, True, True, True])

__getitem__(index)
Return a data batch: self[index].

__len__()
Return len(self).

add(obs, act, rew, done, obs_next=0, info={}, weight=None)
Add a batch of data into replay buffer.

reset()
Clear all the data in replay buffer.

sample(batch_size)
Get a random sample from buffer with size equal to batch_size. Return all the data in the buffer if
batch_size is 0.

Returns Sample data and its corresponding index inside the buffer.

update(buffer)
Move the data from the given buffer to self.

class tianshou.data.ListReplayBuffer
Bases: tianshou.data.buffer.ReplayBuffer

The function of ListReplayBuffer is almost the same as ReplayBuffer. The only difference is that
ListReplayBuffer is based on list.

reset()
Clear all the data in replay buffer.

class tianshou.data.PrioritizedReplayBuffer(size)
Bases: tianshou.data.buffer.ReplayBuffer

docstring for PrioritizedReplayBuffer

add(obs, act, rew, done, obs_next=0, info={}, weight=None)
Add a batch of data into replay buffer.

reset()
Clear all the data in replay buffer.

sample(batch_size)
Get a random sample from buffer with size equal to batch_size. Return all the data in the buffer if
batch_size is 0.

Returns Sample data and its corresponding index inside the buffer.
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class tianshou.data.Collector(policy, env, buffer=None, stat_size=100, store_obs_next=True,
**kwargs)

Bases: object

The Collector enables the policy to interact with different types of environments conveniently.

Parameters

• policy – an instance of the BasePolicy class.

• env – an environment or an instance of the BaseVectorEnv class.

• buffer – an instance of the ReplayBuffer class, or a list of ReplayBuffer. If set
to None, it will automatically assign a small-size ReplayBuffer.

• stat_size (int) – for the moving average of recording speed, defaults to 100.

• store_obs_next (bool) – whether to store the obs_next to replay buffer, defaults to
True.

Example:

policy = PGPolicy(...) # or other policies if you wish
env = gym.make('CartPole-v0')
replay_buffer = ReplayBuffer(size=10000)
# here we set up a collector with a single environment
collector = Collector(policy, env, buffer=replay_buffer)

# the collector supports vectorized environments as well
envs = VectorEnv([lambda: gym.make('CartPole-v0') for _ in range(3)])
buffers = [ReplayBuffer(size=5000) for _ in range(3)]
# you can also pass a list of replay buffer to collector, for multi-env
# collector = Collector(policy, envs, buffer=buffers)
collector = Collector(policy, envs, buffer=replay_buffer)

# collect at least 3 episodes
collector.collect(n_episode=3)
# collect 1 episode for the first env, 3 for the third env
collector.collect(n_episode=[1, 0, 3])
# collect at least 2 steps
collector.collect(n_step=2)
# collect episodes with visual rendering (the render argument is the
# sleep time between rendering consecutive frames)
collector.collect(n_episode=1, render=0.03)

# sample data with a given number of batch-size:
batch_data = collector.sample(batch_size=64)
# policy.learn(batch_data) # btw, vanilla policy gradient only
# supports on-policy training, so here we pick all data in the buffer
batch_data = collector.sample(batch_size=0)
policy.learn(batch_data)
# on-policy algorithms use the collected data only once, so here we
# clear the buffer
collector.reset_buffer()

For the scenario of collecting data from multiple environments to a single buffer, the cache buffers will turn on
automatically. It may return the data more than the given limitation.

Note: Please make sure the given environment has a time limitation.
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close()
Close the environment(s).

collect(n_step=0, n_episode=0, render=0)
Collect a specified number of step or episode.

Parameters

• n_step (int) – how many steps you want to collect.

• n_episode (int or list) – how many episodes you want to collect (in each envi-
ronment).

• render (float) – the sleep time between rendering consecutive frames. No rendering
if it is 0 (default option).

Note: One and only one collection number specification is permitted, either n_step or n_episode.

Returns

A dict including the following keys

• n/ep the collected number of episodes.

• n/st the collected number of steps.

• v/st the speed of steps per second.

• v/ep the speed of episode per second.

• rew the mean reward over collected episodes.

• len the mean length over collected episodes.

get_env_num()
Return the number of environments the collector has.

render(**kwargs)
Render all the environment(s).

reset_buffer()
Reset the main data buffer.

reset_env()
Reset all of the environment(s)’ states and reset all of the cache buffers (if need).

sample(batch_size)
Sample a data batch from the internal replay buffer. It will call process_fn() before returning the final
batch data.

Parameters batch_size (int) – 0 means it will extract all the data from the buffer, other-
wise it will extract the data with the given batch_size.

seed(seed=None)
Reset all the seed(s) of the given environment(s).
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1.6 tianshou.env

class tianshou.env.BaseVectorEnv(env_fns)
Bases: abc.ABC, gym.core.Wrapper

Base class for vectorized environments wrapper. Usage:

env_num = 8
envs = VectorEnv([lambda: gym.make(task) for _ in range(env_num)])
assert len(envs) == env_num

It accepts a list of environment generators. In other words, an environment generator efn of a specific task
means that efn() returns the environment of the given task, for example, gym.make(task).

All of the VectorEnv must inherit BaseVectorEnv . Here are some other usages:

envs.seed(2) # which is equal to the next line
envs.seed([2, 3, 4, 5, 6, 7, 8, 9]) # set specific seed for each env
obs = envs.reset() # reset all environments
obs = envs.reset([0, 5, 7]) # reset 3 specific environments
obs, rew, done, info = envs.step([1] * 8) # step synchronously
envs.render() # render all environments
envs.close() # close all environments

__len__()
Return len(self), which is the number of environments.

abstract close()
Close all of the environments.

abstract render(**kwargs)
Render all of the environments.

abstract reset(id=None)
Reset the state of all the environments and return initial observations if id is None, otherwise reset the
specific environments with given id, either an int or a list.

abstract seed(seed=None)
Set the seed for all environments. Accept None, an int (which will extend i to [i, i + 1, i + 2,
...]) or a list.

abstract step(action)
Run one timestep of all the environments’ dynamics. When the end of episode is reached, you are respon-
sible for calling reset(id) to reset this environment’s state.

Accept a batch of action and return a tuple (obs, rew, done, info).

Parameters action (numpy.ndarray) – a batch of action provided by the agent.

Returns

A tuple including four items:

• obs a numpy.ndarray, the agent’s observation of current environments

• rew a numpy.ndarray, the amount of rewards returned after previous actions

• done a numpy.ndarray, whether these episodes have ended, in which case further step()
calls will return undefined results

• info a numpy.ndarray, contains auxiliary diagnostic information (helpful for debugging,
and sometimes learning)
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class tianshou.env.VectorEnv(env_fns)
Bases: tianshou.env.vecenv.BaseVectorEnv

Dummy vectorized environment wrapper, implemented in for-loop. The usage is in BaseVectorEnv .

close()
Close all of the environments.

render(**kwargs)
Render all of the environments.

reset(id=None)
Reset the state of all the environments and return initial observations if id is None, otherwise reset the
specific environments with given id, either an int or a list.

seed(seed=None)
Set the seed for all environments. Accept None, an int (which will extend i to [i, i + 1, i + 2,
...]) or a list.

step(action)
Run one timestep of all the environments’ dynamics. When the end of episode is reached, you are respon-
sible for calling reset(id) to reset this environment’s state.

Accept a batch of action and return a tuple (obs, rew, done, info).

Parameters action (numpy.ndarray) – a batch of action provided by the agent.

Returns

A tuple including four items:

• obs a numpy.ndarray, the agent’s observation of current environments

• rew a numpy.ndarray, the amount of rewards returned after previous actions

• done a numpy.ndarray, whether these episodes have ended, in which case further step()
calls will return undefined results

• info a numpy.ndarray, contains auxiliary diagnostic information (helpful for debugging,
and sometimes learning)

class tianshou.env.SubprocVectorEnv(env_fns)
Bases: tianshou.env.vecenv.BaseVectorEnv

Vectorized environment wrapper based on subprocess. The usage is in BaseVectorEnv .

close()
Close all of the environments.

render(**kwargs)
Render all of the environments.

reset(id=None)
Reset the state of all the environments and return initial observations if id is None, otherwise reset the
specific environments with given id, either an int or a list.

seed(seed=None)
Set the seed for all environments. Accept None, an int (which will extend i to [i, i + 1, i + 2,
...]) or a list.

step(action)
Run one timestep of all the environments’ dynamics. When the end of episode is reached, you are respon-
sible for calling reset(id) to reset this environment’s state.

Accept a batch of action and return a tuple (obs, rew, done, info).
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Parameters action (numpy.ndarray) – a batch of action provided by the agent.

Returns

A tuple including four items:

• obs a numpy.ndarray, the agent’s observation of current environments

• rew a numpy.ndarray, the amount of rewards returned after previous actions

• done a numpy.ndarray, whether these episodes have ended, in which case further step()
calls will return undefined results

• info a numpy.ndarray, contains auxiliary diagnostic information (helpful for debugging,
and sometimes learning)

class tianshou.env.RayVectorEnv(env_fns)
Bases: tianshou.env.vecenv.BaseVectorEnv

Vectorized environment wrapper based on ray. However, according to our test, it is about two times slower than
SubprocVectorEnv . The usage is in BaseVectorEnv .

close()
Close all of the environments.

render(**kwargs)
Render all of the environments.

reset(id=None)
Reset the state of all the environments and return initial observations if id is None, otherwise reset the
specific environments with given id, either an int or a list.

seed(seed=None)
Set the seed for all environments. Accept None, an int (which will extend i to [i, i + 1, i + 2,
...]) or a list.

step(action)
Run one timestep of all the environments’ dynamics. When the end of episode is reached, you are respon-
sible for calling reset(id) to reset this environment’s state.

Accept a batch of action and return a tuple (obs, rew, done, info).

Parameters action (numpy.ndarray) – a batch of action provided by the agent.

Returns

A tuple including four items:

• obs a numpy.ndarray, the agent’s observation of current environments

• rew a numpy.ndarray, the amount of rewards returned after previous actions

• done a numpy.ndarray, whether these episodes have ended, in which case further step()
calls will return undefined results

• info a numpy.ndarray, contains auxiliary diagnostic information (helpful for debugging,
and sometimes learning)
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1.7 tianshou.policy

class tianshou.policy.BasePolicy(**kwargs)
Bases: abc.ABC, torch.nn.modules.module.Module

Tianshou aims to modularizing RL algorithms. It comes into several classes of policies in Tianshou. All of the
policy classes must inherit BasePolicy .

A policy class typically has four parts:

• __init__(): initialize the policy, including coping the target network and so on;

• __call__(): compute action with given observation;

• process_fn(): pre-process data from the replay buffer (this function can interact with replay buffer);

• learn(): update policy with a given batch of data.

Most of the policy needs a neural network to predict the action and an optimizer to optimize the policy. The
rules of self-defined networks are:

1. Input: observation obs (may be a numpy.ndarray or torch.Tensor), hidden state state (for
RNN usage), and other information info provided by the environment.

2. Output: some logits and the next hidden state state. The logits could be a tuple instead of a torch.
Tensor. It depends on how the policy process the network output. For example, in PPO, the return of the
network might be (mu, sigma), state for Gaussian policy.

Since BasePolicy inherits torch.nn.Module, you can operate BasePolicy almost the same as
torch.nn.Module, for instance, load and save the model:

torch.save(policy.state_dict(), 'policy.pth')
policy.load_state_dict(torch.load('policy.pth'))

abstract __call__(batch, state=None, **kwargs)
Compute action over the given batch data.

Returns

A Batch which MUST have the following keys:

• act an numpy.ndarray or a torch.Tensor, the action over given batch data.

• state a dict, an numpy.ndarray or a torch.Tensor, the internal state of the policy, None
as default.

Other keys are user-defined. It depends on the algorithm. For example,

# some code
return Batch(logits=..., act=..., state=None, dist=...)

abstract learn(batch, **kwargs)
Update policy with a given batch of data.

Returns A dict which includes loss and its corresponding label.

process_fn(batch, buffer, indice)
Pre-process the data from the provided replay buffer. Check out Policy for more information.

class tianshou.policy.DQNPolicy(model, optim, discount_factor=0.99, estimation_step=1, tar-
get_update_freq=0, **kwargs)

Bases: tianshou.policy.base.BasePolicy

Implementation of Deep Q Network. arXiv:1312.5602
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Parameters

• model (torch.nn.Module) – a model following the rules in BasePolicy . (s ->
logits)

• optim (torch.optim.Optimizer) – a torch.optim for optimizing the model.

• discount_factor (float) – in [0, 1].

• estimation_step (int) – greater than 1, the number of steps to look ahead.

• target_update_freq (int) – the target network update frequency (0 if you do not
use the target network).

__call__(batch, state=None, model='model', input='obs', eps=None, **kwargs)
Compute action over the given batch data.

Parameters eps (float) – in [0, 1], for epsilon-greedy exploration method.

Returns

A Batch which has 3 keys:

• act the action.

• logits the network’s raw output.

• state the hidden state.

More information can be found at __call__().

eval()
Set the module in evaluation mode, except for the target network.

learn(batch, **kwargs)
Update policy with a given batch of data.

Returns A dict which includes loss and its corresponding label.

process_fn(batch, buffer, indice)
Compute the n-step return for Q-learning targets:

𝐺𝑡 =

𝑡+𝑛−1∑︁
𝑖=𝑡

𝛾𝑖−𝑡(1− 𝑑𝑖)𝑟𝑖 + 𝛾𝑛(1− 𝑑𝑡+𝑛)max
𝑎

𝑄𝑜𝑙𝑑(𝑠𝑡+𝑛, argmax
𝑎

(𝑄𝑛𝑒𝑤(𝑠𝑡+𝑛, 𝑎)))

, where 𝛾 is the discount factor, 𝛾 ∈ [0, 1], 𝑑𝑡 is the done flag of step 𝑡. If there is no target network, the
𝑄𝑜𝑙𝑑 is equal to 𝑄𝑛𝑒𝑤.

set_eps(eps)
Set the eps for epsilon-greedy exploration.

sync_weight()
Synchronize the weight for the target network.

train()
Set the module in training mode, except for the target network.

class tianshou.policy.PGPolicy(model, optim, dist_fn=<class
'torch.distributions.categorical.Categorical'>, dis-
count_factor=0.99, **kwargs)

Bases: tianshou.policy.base.BasePolicy

Implementation of Vanilla Policy Gradient.

Parameters
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• model (torch.nn.Module) – a model following the rules in BasePolicy . (s ->
logits)

• optim (torch.optim.Optimizer) – a torch.optim for optimizing the model.

• dist_fn (torch.distributions.Distribution) – for computing the action.

• discount_factor (float) – in [0, 1].

__call__(batch, state=None, **kwargs)
Compute action over the given batch data.

Returns

A Batch which has 4 keys:

• act the action.

• logits the network’s raw output.

• dist the action distribution.

• state the hidden state.

More information can be found at __call__().

learn(batch, batch_size=None, repeat=1, **kwargs)
Update policy with a given batch of data.

Returns A dict which includes loss and its corresponding label.

process_fn(batch, buffer, indice)
Compute the discounted returns for each frame:

𝐺𝑡 =

𝑇∑︁
𝑖=𝑡

𝛾𝑖−𝑡𝑟𝑖

, where 𝑇 is the terminal time step, 𝛾 is the discount factor, 𝛾 ∈ [0, 1].

class tianshou.policy.A2CPolicy(actor, critic, optim, dist_fn=<class
'torch.distributions.categorical.Categorical'>, dis-
count_factor=0.99, vf_coef=0.5, ent_coef=0.01,
max_grad_norm=None, **kwargs)

Bases: tianshou.policy.pg.PGPolicy

Implementation of Synchronous Advantage Actor-Critic. arXiv:1602.01783

Parameters

• actor (torch.nn.Module) – the actor network following the rules in BasePolicy .
(s -> logits)

• critic (torch.nn.Module) – the critic network. (s -> V(s))

• optim (torch.optim.Optimizer) – the optimizer for actor and critic network.

• dist_fn (torch.distributions.Distribution) – for computing the action,
defaults to torch.distributions.Categorical.

• discount_factor (float) – in [0, 1], defaults to 0.99.

• vf_coef (float) – weight for value loss, defaults to 0.5.

• ent_coef (float) – weight for entropy loss, defaults to 0.01.

• max_grad_norm (float) – clipping gradients in back propagation, defaults to None.
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__call__(batch, state=None, **kwargs)
Compute action over the given batch data.

Returns

A Batch which has 4 keys:

• act the action.

• logits the network’s raw output.

• dist the action distribution.

• state the hidden state.

More information can be found at __call__().

learn(batch, batch_size=None, repeat=1, **kwargs)
Update policy with a given batch of data.

Returns A dict which includes loss and its corresponding label.

class tianshou.policy.DDPGPolicy(actor, actor_optim, critic, critic_optim, tau=0.005,
gamma=0.99, exploration_noise=0.1, action_range=None,
reward_normalization=False, ignore_done=False,
**kwargs)

Bases: tianshou.policy.base.BasePolicy

Implementation of Deep Deterministic Policy Gradient. arXiv:1509.02971

Parameters

• actor (torch.nn.Module) – the actor network following the rules in BasePolicy .
(s -> logits)

• actor_optim (torch.optim.Optimizer) – the optimizer for actor network.

• critic (torch.nn.Module) – the critic network. (s, a -> Q(s, a))

• critic_optim (torch.optim.Optimizer) – the optimizer for critic network.

• tau (float) – param for soft update of the target network, defaults to 0.005.

• gamma (float) – discount factor, in [0, 1], defaults to 0.99.

• exploration_noise (float) – the noise intensity, add to the action, defaults to 0.1.

• action_range ([float, float]) – the action range (minimum, maximum).

• reward_normalization (bool) – normalize the reward to Normal(0, 1), defaults to
False.

• ignore_done (bool) – ignore the done flag while training the policy, defaults to False.

__call__(batch, state=None, model='actor', input='obs', eps=None, **kwargs)
Compute action over the given batch data.

Parameters eps (float) – in [0, 1], for exploration use.

Returns

A Batch which has 2 keys:

• act the action.

• state the hidden state.

More information can be found at __call__().
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eval()
Set the module in evaluation mode, except for the target network.

learn(batch, **kwargs)
Update policy with a given batch of data.

Returns A dict which includes loss and its corresponding label.

process_fn(batch, buffer, indice)
Pre-process the data from the provided replay buffer. Check out Policy for more information.

set_eps(eps)
Set the eps for exploration.

sync_weight()
Soft-update the weight for the target network.

train()
Set the module in training mode, except for the target network.

class tianshou.policy.PPOPolicy(actor, critic, optim, dist_fn, discount_factor=0.99,
max_grad_norm=0.5, eps_clip=0.2, vf_coef=0.5,
ent_coef=0.0, action_range=None, **kwargs)

Bases: tianshou.policy.pg.PGPolicy

Implementation of Proximal Policy Optimization. arXiv:1707.06347

Parameters

• actor (torch.nn.Module) – the actor network following the rules in BasePolicy .
(s -> logits)

• critic (torch.nn.Module) – the critic network. (s -> V(s))

• optim (torch.optim.Optimizer) – the optimizer for actor and critic network.

• dist_fn (torch.distributions.Distribution) – for computing the action.

• discount_factor (float) – in [0, 1], defaults to 0.99.

• max_grad_norm (float) – clipping gradients in back propagation, defaults to None.

• eps_clip (float) – 𝜖 in 𝐿𝐶𝐿𝐼𝑃 in the original paper, defaults to 0.2.

• vf_coef (float) – weight for value loss, defaults to 0.5.

• ent_coef (float) – weight for entropy loss, defaults to 0.01.

• action_range ([float, float]) – the action range (minimum, maximum).

__call__(batch, state=None, model='actor', **kwargs)
Compute action over the given batch data.

Returns

A Batch which has 4 keys:

• act the action.

• logits the network’s raw output.

• dist the action distribution.

• state the hidden state.

More information can be found at __call__().
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eval()
Set the module in evaluation mode, except for the target network.

learn(batch, batch_size=None, repeat=1, **kwargs)
Update policy with a given batch of data.

Returns A dict which includes loss and its corresponding label.

sync_weight()
Synchronize the weight for the target network.

train()
Set the module in training mode, except for the target network.

class tianshou.policy.TD3Policy(actor, actor_optim, critic1, critic1_optim, critic2,
critic2_optim, tau=0.005, gamma=0.99, ex-
ploration_noise=0.1, policy_noise=0.2, up-
date_actor_freq=2, noise_clip=0.5, action_range=None,
reward_normalization=False, ignore_done=False, **kwargs)

Bases: tianshou.policy.ddpg.DDPGPolicy

Implementation of Twin Delayed Deep Deterministic Policy Gradient, arXiv:1802.09477

Parameters

• actor (torch.nn.Module) – the actor network following the rules in BasePolicy .
(s -> logits)

• actor_optim (torch.optim.Optimizer) – the optimizer for actor network.

• critic1 (torch.nn.Module) – the first critic network. (s, a -> Q(s, a))

• critic1_optim (torch.optim.Optimizer) – the optimizer for the first critic net-
work.

• critic2 (torch.nn.Module) – the second critic network. (s, a -> Q(s, a))

• critic2_optim (torch.optim.Optimizer) – the optimizer for the second critic
network.

• tau (float) – param for soft update of the target network, defaults to 0.005.

• gamma (float) – discount factor, in [0, 1], defaults to 0.99.

• exploration_noise (float) – the noise intensity, add to the action, defaults to 0.1.

• policy_noise (float) – the noise used in updating policy network, default to 0.2.

• update_actor_freq (int) – the update frequency of actor network, default to 2.

• noise_clip (float) – the clipping range used in updating policy network, default to
0.5.

• action_range ([float, float]) – the action range (minimum, maximum).

• reward_normalization (bool) – normalize the reward to Normal(0, 1), defaults to
False.

• ignore_done (bool) – ignore the done flag while training the policy, defaults to False.

eval()
Set the module in evaluation mode, except for the target network.

learn(batch, **kwargs)
Update policy with a given batch of data.

Returns A dict which includes loss and its corresponding label.
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sync_weight()
Soft-update the weight for the target network.

train()
Set the module in training mode, except for the target network.

class tianshou.policy.SACPolicy(actor, actor_optim, critic1, critic1_optim, critic2,
critic2_optim, tau=0.005, gamma=0.99, alpha=0.2,
action_range=None, reward_normalization=False, ig-
nore_done=False, **kwargs)

Bases: tianshou.policy.ddpg.DDPGPolicy

Implementation of Soft Actor-Critic. arXiv:1812.05905

Parameters

• actor (torch.nn.Module) – the actor network following the rules in BasePolicy .
(s -> logits)

• actor_optim (torch.optim.Optimizer) – the optimizer for actor network.

• critic1 (torch.nn.Module) – the first critic network. (s, a -> Q(s, a))

• critic1_optim (torch.optim.Optimizer) – the optimizer for the first critic net-
work.

• critic2 (torch.nn.Module) – the second critic network. (s, a -> Q(s, a))

• critic2_optim (torch.optim.Optimizer) – the optimizer for the second critic
network.

• tau (float) – param for soft update of the target network, defaults to 0.005.

• gamma (float) – discount factor, in [0, 1], defaults to 0.99.

• exploration_noise (float) – the noise intensity, add to the action, defaults to 0.1.

• alpha (float) – entropy regularization coefficient, default to 0.2.

• action_range ([float, float]) – the action range (minimum, maximum).

• reward_normalization (bool) – normalize the reward to Normal(0, 1), defaults to
False.

• ignore_done (bool) – ignore the done flag while training the policy, defaults to False.

__call__(batch, state=None, input='obs', **kwargs)
Compute action over the given batch data.

Parameters eps (float) – in [0, 1], for exploration use.

Returns

A Batch which has 2 keys:

• act the action.

• state the hidden state.

More information can be found at __call__().

eval()
Set the module in evaluation mode, except for the target network.

learn(batch, **kwargs)
Update policy with a given batch of data.

Returns A dict which includes loss and its corresponding label.
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sync_weight()
Soft-update the weight for the target network.

train()
Set the module in training mode, except for the target network.

1.8 tianshou.trainer

tianshou.trainer.gather_info(start_time, train_c, test_c, best_reward)
A simple wrapper of gathering information from collectors.

Returns

A dictionary with the following keys:

• train_step the total collected step of training collector;

• train_episode the total collected episode of training collector;

• train_time/collector the time for collecting frames in the training collector;

• train_time/model the time for training models;

• train_speed the speed of training (frames per second);

• test_step the total collected step of test collector;

• test_episode the total collected episode of test collector;

• test_time the time for testing;

• test_speed the speed of testing (frames per second);

• best_reward the best reward over the test results;

• duration the total elapsed time.

tianshou.trainer.test_episode(policy, collector, test_fn, epoch, n_episode)
A simple wrapper of testing policy in collector.

tianshou.trainer.onpolicy_trainer(policy, train_collector, test_collector, max_epoch,
step_per_epoch, collect_per_step, repeat_per_collect,
episode_per_test, batch_size, train_fn=None, test_fn=None,
stop_fn=None, writer=None, log_interval=1, ver-
bose=True, task='', **kwargs)

A wrapper for on-policy trainer procedure.

Parameters

• policy – an instance of the BasePolicy class.

• train_collector (Collector) – the collector used for training.

• test_collector (Collector) – the collector used for testing.

• max_epoch (int) – the maximum of epochs for training. The training process might be
finished before reaching the max_epoch.

• step_per_epoch (int) – the number of step for updating policy network in one epoch.

• collect_per_step (int) – the number of frames the collector would collect before
the network update. In other words, collect some frames and do one policy network update.
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• repeat_per_collect (int) – the number of repeat time for policy learning, for ex-
ample, set it to 2 means the policy needs to learn each given batch data twice.

• episode_per_test (int or list of ints) – the number of episodes for one
policy evaluation.

• batch_size (int) – the batch size of sample data, which is going to feed in the policy
network.

• train_fn (function) – a function receives the current number of epoch index and
performs some operations at the beginning of training in this epoch.

• test_fn (function) – a function receives the current number of epoch index and per-
forms some operations at the beginning of testing in this epoch.

• stop_fn (function) – a function receives the average undiscounted returns of the test-
ing result, return a boolean which indicates whether reaching the goal.

• writer (torch.utils.tensorboard.SummaryWriter) – a TensorBoard Sum-
maryWriter.

• log_interval (int) – the log interval of the writer.

• verbose (bool) – whether to print the information.

Returns See gather_info().

tianshou.trainer.offpolicy_trainer(policy, train_collector, test_collector, max_epoch,
step_per_epoch, collect_per_step, episode_per_test,
batch_size, train_fn=None, test_fn=None, stop_fn=None,
writer=None, log_interval=1, verbose=True, task='',
**kwargs)

A wrapper for off-policy trainer procedure.

Parameters

• policy – an instance of the BasePolicy class.

• train_collector (Collector) – the collector used for training.

• test_collector (Collector) – the collector used for testing.

• max_epoch (int) – the maximum of epochs for training. The training process might be
finished before reaching the max_epoch.

• step_per_epoch (int) – the number of step for updating policy network in one epoch.

• collect_per_step (int) – the number of frames the collector would collect before
the network update. In other words, collect some frames and do one policy network update.

• episode_per_test – the number of episodes for one policy evaluation.

• batch_size (int) – the batch size of sample data, which is going to feed in the policy
network.

• train_fn (function) – a function receives the current number of epoch index and
performs some operations at the beginning of training in this epoch.

• test_fn (function) – a function receives the current number of epoch index and per-
forms some operations at the beginning of testing in this epoch.

• stop_fn (function) – a function receives the average undiscounted returns of the test-
ing result, return a boolean which indicates whether reaching the goal.

• writer (torch.utils.tensorboard.SummaryWriter) – a TensorBoard Sum-
maryWriter.
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• log_interval (int) – the log interval of the writer.

• verbose (bool) – whether to print the information.

Returns See gather_info().

1.9 tianshou.exploration

class tianshou.exploration.OUNoise(sigma=0.3, theta=0.15, dt=0.01, x0=None)
Bases: object

Class for Ornstein-Uhlenbeck process, as used for exploration in DDPG. Usage:

# init
self.noise = OUNoise()
# generate noise
noise = self.noise(logits.shape, eps)

For required parameters, you can refer to the stackoverflow page. However, our experiment result shows that
(similar to OpenAI SpinningUp) using vanilla gaussian process has little difference from using the Ornstein-
Uhlenbeck process.

__call__(size, mu=0.1)
Generate new noise. Return a numpy.ndarray which size is equal to size.

reset()
Reset to the initial state.

1.10 tianshou.utils

class tianshou.utils.MovAvg(size=100)
Bases: object

Class for moving average. Usage:

>>> stat = MovAvg(size=66)
>>> stat.add(torch.tensor(5))
5.0
>>> stat.add(float('inf')) # which will not add to stat
5.0
>>> stat.add([6, 7, 8])
6.5
>>> stat.get()
6.5
>>> print(f'{stat.mean():.2f}±{stat.std():.2f}')
6.50±1.12

add(x)
Add a scalar into MovAvg. You can add torch.Tensor with only one element, a python scalar, or a
list of python scalar. It will automatically exclude the infinity.

get()
Get the average.

mean()
Get the average. Same as get().
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std()
Get the standard deviation.

1.11 Contributing

We always welcome contributions to help make Tianshou better. If you would like to contribute, please check out the
guidelines here. Below are an incomplete list of our contributors (find more on this page).

• Jiayi Weng (Trinkle23897)

• Minghao Zhang (Mehooz)
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