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Tianshou, Release 0.4.4

Tianshou () is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning
libraries, which are mainly based on TensorFlow, have many nested classes, unfriendly API, or slow-speed, Tianshou
provides a fast-speed framework and pythonic API for building the deep reinforcement learning agent. The supported
interface algorithms include:

• DQNPolicy Deep Q-Network

• DQNPolicy Double DQN

• DQNPolicy Dueling DQN

• C51Policy Categorical DQN

• RainbowPolicy Rainbow DQN

• QRDQNPolicy Quantile Regression DQN

• IQNPolicy Implicit Quantile Network

• FQFPolicy Fully-parameterized Quantile Function

• PGPolicy Policy Gradient

• NPGPolicy Natural Policy Gradient

• A2CPolicy Advantage Actor-Critic

• TRPOPolicy Trust Region Policy Optimization

• PPOPolicy Proximal Policy Optimization

• DDPGPolicy Deep Deterministic Policy Gradient

• TD3Policy Twin Delayed DDPG

• SACPolicy Soft Actor-Critic

• DiscreteSACPolicy Discrete Soft Actor-Critic

• ImitationPolicy Imitation Learning

• DiscreteBCQPolicy Discrete Batch-Constrained deep Q-Learning

• DiscreteCQLPolicy Discrete Conservative Q-Learning

• DiscreteCRRPolicy Critic Regularized Regression

• PSRLPolicy Posterior Sampling Reinforcement Learning

• PrioritizedReplayBuffer Prioritized Experience Replay

• compute_episodic_return() Generalized Advantage Estimator

Here is Tianshou’s other features:

• Elegant framework, using only ~3000 lines of code

• State-of-the-art MuJoCo benchmark

• Support parallel environment simulation (synchronous or asynchronous) for all algorithms: Parallel Sampling

• Support recurrent state representation in actor network and critic network (RNN-style training for POMDP):
RNN-style Training

• Support any type of environment state/action (e.g. a dict, a self-defined class, . . . ): User-defined Environment
and Different State Representation

• Support Customize Training Process
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• Support n-step returns estimation compute_nstep_return() and prioritized experience replay
PrioritizedReplayBuffer for all Q-learning based algorithms; GAE, nstep and PER are very fast thanks
to numba jit function and vectorized numpy operation

• Support Multi-Agent RL

• Support both TensorBoard and W&B log tools

• Support multi-GPU training Multi-GPU Training

• Comprehensive unit tests, including functional checking, RL pipeline checking, documentation checking, PEP8
code-style checking, and type checking

https://tianshou.readthedocs.io/zh/master/
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CHAPTER

ONE

INSTALLATION

Tianshou is currently hosted on PyPI and conda-forge. It requires Python >= 3.6.

You can simply install Tianshou from PyPI with the following command:

$ pip install tianshou

If you use Anaconda or Miniconda, you can install Tianshou from conda-forge through the following command:

$ conda -c conda-forge install tianshou

You can also install with the newest version through GitHub:

$ pip install git+https://github.com/thu-ml/tianshou.git@master --upgrade

After installation, open your python console and type

import tianshou
print(tianshou.__version__)

If no error occurs, you have successfully installed Tianshou.

Tianshou is still under development, you can also check out the documents in stable version through tian-
shou.readthedocs.io/en/stable/.

1.1 Deep Q Network

Deep reinforcement learning has achieved significant successes in various applications. Deep Q Network (DQN)
[MKS+15] is the pioneer one. In this tutorial, we will show how to train a DQN agent on CartPole with Tianshou step
by step. The full script is at test/discrete/test_dqn.py.

Contrary to existing Deep RL libraries such as RLlib, which could only accept a config specification of hyperparame-
ters, network, and others, Tianshou provides an easy way of construction through the code-level.
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1.1.1 Make an Environment

First of all, you have to make an environment for your agent to interact with. For environment interfaces, we follow
the convention of OpenAI Gym. In your Python code, simply import Tianshou and make the environment:

import gym
import tianshou as ts

env = gym.make('CartPole-v0')

CartPole-v0 is a simple environment with a discrete action space, for which DQN applies. You have to identify
whether the action space is continuous or discrete and apply eligible algorithms. DDPG [LHP+16], for example,
could only be applied to continuous action spaces, while almost all other policy gradient methods could be applied to
both, depending on the probability distribution on the action.

1.1.2 Setup Multi-environment Wrapper

If you want to use the original gym.Env:

train_envs = gym.make('CartPole-v0')
test_envs = gym.make('CartPole-v0')

Tianshou supports parallel sampling for all algorithms. It provides four types of vectorized environment wrapper:
DummyVectorEnv , SubprocVectorEnv , ShmemVectorEnv , and RayVectorEnv . It can be used as fol-
lows: (more explanation can be found at Parallel Sampling)

train_envs = ts.env.DummyVectorEnv([lambda: gym.make('CartPole-v0') for _ in
→˓range(10)])
test_envs = ts.env.DummyVectorEnv([lambda: gym.make('CartPole-v0') for _ in
→˓range(100)])

Here, we set up 10 environments in train_envs and 100 environments in test_envs.

For the demonstration, here we use the second code-block.

Warning: If you use your own environment, please make sure the seed method is set up properly, e.g.,

def seed(self, seed):
np.random.seed(seed)

Otherwise, the outputs of these envs may be the same with each other.

1.1.3 Build the Network

Tianshou supports any user-defined PyTorch networks and optimizers. Yet, of course, the inputs and outputs must
comply with Tianshou’s API. Here is an example:

import torch, numpy as np
from torch import nn

class Net(nn.Module):
def __init__(self, state_shape, action_shape):

super().__init__()
self.model = nn.Sequential(

(continues on next page)
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(continued from previous page)

nn.Linear(np.prod(state_shape), 128), nn.ReLU(inplace=True),
nn.Linear(128, 128), nn.ReLU(inplace=True),
nn.Linear(128, 128), nn.ReLU(inplace=True),
nn.Linear(128, np.prod(action_shape)),

)

def forward(self, obs, state=None, info={}):
if not isinstance(obs, torch.Tensor):

obs = torch.tensor(obs, dtype=torch.float)
batch = obs.shape[0]
logits = self.model(obs.view(batch, -1))
return logits, state

state_shape = env.observation_space.shape or env.observation_space.n
action_shape = env.action_space.shape or env.action_space.n
net = Net(state_shape, action_shape)
optim = torch.optim.Adam(net.parameters(), lr=1e-3)

You can also use pre-defined MLP networks in common, discrete, and continuous. The rules of self-defined
networks are:

1. Input: observation obs (may be a numpy.ndarray, torch.Tensor, dict, or self-defined class), hidden
state state (for RNN usage), and other information info provided by the environment.

2. Output: some logits, the next hidden state state. The logits could be a tuple instead of a torch.Tensor,
or some other useful variables or results during the policy forwarding procedure. It depends on how the policy
class process the network output. For example, in PPO [SWD+17], the return of the network might be (mu,
sigma), state for Gaussian policy.

Note: The logits here indicates the raw output of the network. In supervised learning, the raw output of predic-
tion/classification model is called logits, and here we extend this definition to any raw output of the neural network.

1.1.4 Setup Policy

We use the defined net and optim above, with extra policy hyper-parameters, to define a policy. Here we define a
DQN policy with a target network:

policy = ts.policy.DQNPolicy(net, optim, discount_factor=0.9, estimation_step=3,
→˓target_update_freq=320)

1.1.5 Setup Collector

The collector is a key concept in Tianshou. It allows the policy to interact with different types of environments
conveniently. In each step, the collector will let the policy perform (at least) a specified number of steps or episodes
and store the data in a replay buffer.

train_collector = ts.data.Collector(policy, train_envs, ts.data.
→˓VectorReplayBuffer(20000, 10), exploration_noise=True)
test_collector = ts.data.Collector(policy, test_envs, exploration_noise=True)

1.1. Deep Q Network 5
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1.1.6 Train Policy with a Trainer

Tianshou provides onpolicy_trainer(), offpolicy_trainer(), and offline_trainer(). The
trainer will automatically stop training when the policy reach the stop condition stop_fn on test collector. Since
DQN is an off-policy algorithm, we use the offpolicy_trainer() as follows:

result = ts.trainer.offpolicy_trainer(
policy, train_collector, test_collector,
max_epoch=10, step_per_epoch=10000, step_per_collect=10,
update_per_step=0.1, episode_per_test=100, batch_size=64,
train_fn=lambda epoch, env_step: policy.set_eps(0.1),
test_fn=lambda epoch, env_step: policy.set_eps(0.05),
stop_fn=lambda mean_rewards: mean_rewards >= env.spec.reward_threshold)

print(f'Finished training! Use {result["duration"]}')

The meaning of each parameter is as follows (full description can be found at offpolicy_trainer()):

• max_epoch: The maximum of epochs for training. The training process might be finished before reaching the
max_epoch;

• step_per_epoch: The number of environment step (a.k.a. transition) collected per epoch;

• step_per_collect: The number of transition the collector would collect before the network update. For
example, the code above means “collect 10 transitions and do one policy network update”;

• episode_per_test: The number of episodes for one policy evaluation.

• batch_size: The batch size of sample data, which is going to feed in the policy network.

• train_fn: A function receives the current number of epoch and step index, and performs some operations at
the beginning of training in this epoch. For example, the code above means “reset the epsilon to 0.1 in DQN
before training”.

• test_fn: A function receives the current number of epoch and step index, and performs some operations at
the beginning of testing in this epoch. For example, the code above means “reset the epsilon to 0.05 in DQN
before testing”.

• stop_fn: A function receives the average undiscounted returns of the testing result, return a boolean which
indicates whether reaching the goal.

• logger: See below.

The trainer supports TensorBoard for logging. It can be used as:

from torch.utils.tensorboard import SummaryWriter
from tianshou.utils import TensorboardLogger
writer = SummaryWriter('log/dqn')
logger = TensorboardLogger(writer)

Pass the logger into the trainer, and the training result will be recorded into the TensorBoard.

The returned result is a dictionary as follows:

{
'train_step': 9246,
'train_episode': 504.0,
'train_time/collector': '0.65s',
'train_time/model': '1.97s',
'train_speed': '3518.79 step/s',
'test_step': 49112,
'test_episode': 400.0,

(continues on next page)
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(continued from previous page)

'test_time': '1.38s',
'test_speed': '35600.52 step/s',
'best_reward': 199.03,
'duration': '4.01s'

}

It shows that within approximately 4 seconds, we finished training a DQN agent on CartPole. The mean returns over
100 consecutive episodes is 199.03.

1.1.7 Save/Load Policy

Since the policy inherits the class torch.nn.Module, saving and loading the policy are exactly the same as a torch
module:

torch.save(policy.state_dict(), 'dqn.pth')
policy.load_state_dict(torch.load('dqn.pth'))

1.1.8 Watch the Agent’s Performance

Collector supports rendering. Here is the example of watching the agent’s performance in 35 FPS:

policy.eval()
policy.set_eps(0.05)
collector = ts.data.Collector(policy, env, exploration_noise=True)
collector.collect(n_episode=1, render=1 / 35)

1.1.9 Train a Policy with Customized Codes

“I don’t want to use your provided trainer. I want to customize it!”

Tianshou supports user-defined training code. Here is the code snippet:

# pre-collect at least 5000 transitions with random action before training
train_collector.collect(n_step=5000, random=True)

policy.set_eps(0.1)
for i in range(int(1e6)): # total step

collect_result = train_collector.collect(n_step=10)

# once if the collected episodes' mean returns reach the threshold,
# or every 1000 steps, we test it on test_collector
if collect_result['rews'].mean() >= env.spec.reward_threshold or i % 1000 == 0:

policy.set_eps(0.05)
result = test_collector.collect(n_episode=100)
if result['rews'].mean() >= env.spec.reward_threshold:

print(f'Finished training! Test mean returns: {result["rews"].mean()}')
break

else:
# back to training eps
policy.set_eps(0.1)

# train policy with a sampled batch data from buffer
losses = policy.update(64, train_collector.buffer)

1.1. Deep Q Network 7
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For further usage, you can refer to the Cheat Sheet.

References

1.2 Basic concepts in Tianshou

Tianshou splits a Reinforcement Learning agent training procedure into these parts: trainer, collector, policy, and data
buffer. The general control flow can be described as:

Here is a more detailed description, where Env is the environment and Model is the neural network:

8 Chapter 1. Installation
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1.2.1 Batch

Tianshou provides Batch as the internal data structure to pass any kind of data to other methods, for example, a
collector gives a Batch to policy for learning. Let’s take a look at this script:

>>> import torch, numpy as np
>>> from tianshou.data import Batch
>>> data = Batch(a=4, b=[5, 5], c='2312312', d=('a', -2, -3))
>>> # the list will automatically be converted to numpy array
>>> data.b
array([5, 5])
>>> data.b = np.array([3, 4, 5])
>>> print(data)
Batch(

a: 4,
b: array([3, 4, 5]),
c: '2312312',
d: array(['a', '-2', '-3'], dtype=object),

)
>>> data = Batch(obs={'index': np.zeros((2, 3))}, act=torch.zeros((2, 2)))
>>> data[:, 1] += 6
>>> print(data[-1])
Batch(

obs: Batch(
index: array([0., 6., 0.]),

),
act: tensor([0., 6.]),

)

In short, you can define a Batch with any key-value pair, and perform some common operations over it.

Understand Batch is a dedicated tutorial for Batch. We strongly recommend every user to read it so as to correctly
understand and use Batch.

1.2.2 Buffer

ReplayBuffer stores data generated from interaction between the policy and environment. ReplayBuffer can be
considered as a specialized form (or management) of Batch. It stores all the data in a batch with circular-queue style.

The current implementation of Tianshou typically use 7 reserved keys in Batch:

• obs the observation of step 𝑡 ;

• act the action of step 𝑡 ;

• rew the reward of step 𝑡 ;

• done the done flag of step 𝑡 ;

• obs_next the observation of step 𝑡+ 1 ;

• info the info of step 𝑡 (in gym.Env, the env.step() function returns 4 arguments, and the last one is
info);

• policy the data computed by policy in step 𝑡;

The following code snippet illustrates its usage, including:

• the basic data storage: add();

• get attribute, get slicing data, . . . ;

1.2. Basic concepts in Tianshou 9
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• sample from buffer: sample_indices(batch_size) and sample(batch_size);

• get previous/next transition index within episodes: prev(index) and next(index);

• save/load data from buffer: pickle and HDF5;

>>> import pickle, numpy as np
>>> from tianshou.data import Batch, ReplayBuffer
>>> buf = ReplayBuffer(size=20)
>>> for i in range(3):
... buf.add(Batch(obs=i, act=i, rew=i, done=0, obs_next=i + 1, info={}))

>>> buf.obs
# since we set size = 20, len(buf.obs) == 20.
array([0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
>>> # but there are only three valid items, so len(buf) == 3.
>>> len(buf)
3
>>> # save to file "buf.pkl"
>>> pickle.dump(buf, open('buf.pkl', 'wb'))
>>> # save to HDF5 file
>>> buf.save_hdf5('buf.hdf5')

>>> buf2 = ReplayBuffer(size=10)
>>> for i in range(15):
... done = i % 4 == 0
... buf2.add(Batch(obs=i, act=i, rew=i, done=done, obs_next=i + 1, info={}))
>>> len(buf2)
10
>>> buf2.obs
# since its size = 10, it only stores the last 10 steps' result.
array([10, 11, 12, 13, 14, 5, 6, 7, 8, 9])

>>> # move buf2's result into buf (meanwhile keep it chronologically)
>>> buf.update(buf2)
>>> buf.obs
array([ 0, 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0, 0, 0,

0, 0, 0, 0])

>>> # get all available index by using batch_size = 0
>>> indices = buf.sample_indices(0)
>>> indices
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
>>> # get one step previous/next transition
>>> buf.prev(indices)
array([ 0, 0, 1, 2, 3, 4, 5, 7, 7, 8, 9, 11, 11])
>>> buf.next(indices)
array([ 1, 2, 3, 4, 5, 6, 6, 8, 9, 10, 10, 12, 12])

>>> # get a random sample from buffer
>>> # the batch_data is equal to buf[indices].
>>> batch_data, indices = buf.sample(batch_size=4)
>>> batch_data.obs == buf[indices].obs
array([ True, True, True, True])
>>> len(buf)
13

>>> buf = pickle.load(open('buf.pkl', 'rb')) # load from "buf.pkl"
>>> len(buf)

(continues on next page)
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(continued from previous page)

3
>>> # load complete buffer from HDF5 file
>>> buf = ReplayBuffer.load_hdf5('buf.hdf5')
>>> len(buf)
3

ReplayBuffer also supports frame_stack sampling (typically for RNN usage, see issue#19), ignoring storing the
next observation (save memory in Atari tasks), and multi-modal observation (see issue#38):

>>> buf = ReplayBuffer(size=9, stack_num=4, ignore_obs_next=True)
>>> for i in range(16):
... done = i % 5 == 0
... ptr, ep_rew, ep_len, ep_idx = buf.add(
... Batch(obs={'id': i}, act=i, rew=i,
... done=done, obs_next={'id': i + 1}))
... print(i, ep_len, ep_rew)
0 [1] [0.]
1 [0] [0.]
2 [0] [0.]
3 [0] [0.]
4 [0] [0.]
5 [5] [15.]
6 [0] [0.]
7 [0] [0.]
8 [0] [0.]
9 [0] [0.]
10 [5] [40.]
11 [0] [0.]
12 [0] [0.]
13 [0] [0.]
14 [0] [0.]
15 [5] [65.]
>>> print(buf) # you can see obs_next is not saved in buf
ReplayBuffer(

obs: Batch(
id: array([ 9, 10, 11, 12, 13, 14, 15, 7, 8]),

),
act: array([ 9, 10, 11, 12, 13, 14, 15, 7, 8]),
rew: array([ 9., 10., 11., 12., 13., 14., 15., 7., 8.]),
done: array([False, True, False, False, False, False, True, False,

False]),
)
>>> index = np.arange(len(buf))
>>> print(buf.get(index, 'obs').id)
[[ 7 7 8 9]
[ 7 8 9 10]
[11 11 11 11]
[11 11 11 12]
[11 11 12 13]
[11 12 13 14]
[12 13 14 15]
[ 7 7 7 7]
[ 7 7 7 8]]

>>> # here is another way to get the stacked data
>>> # (stack only for obs and obs_next)
>>> abs(buf.get(index, 'obs')['id'] - buf[index].obs.id).sum().sum()

(continues on next page)
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(continued from previous page)

0
>>> # we can get obs_next through __getitem__, even if it doesn't exist
>>> # however, [:] will select the item according to timestamp,
>>> # that equals to index == [7, 8, 0, 1, 2, 3, 4, 5, 6]
>>> print(buf[:].obs_next.id)
[[ 7 7 7 8]
[ 7 7 8 9]
[ 7 8 9 10]
[ 7 8 9 10]
[11 11 11 12]
[11 11 12 13]
[11 12 13 14]
[12 13 14 15]
[12 13 14 15]]

>>> full_index = np.array([7, 8, 0, 1, 2, 3, 4, 5, 6])
>>> np.allclose(buf[:].obs_next.id, buf[full_index].obs_next.id)
True

Tianshou provides other type of data buffer such as PrioritizedReplayBuffer (based on Segment Tree and
numpy.ndarray) and VectorReplayBuffer (add different episodes’ data but without losing chronological
order). Check out ReplayBuffer for more detail.

1.2.3 Policy

Tianshou aims to modularize RL algorithms. It comes into several classes of policies in Tianshou. All of the policy
classes must inherit BasePolicy .

A policy class typically has the following parts:

• __init__(): initialize the policy, including copying the target network and so on;

• forward(): compute action with given observation;

• process_fn(): pre-process data from the replay buffer;

• learn(): update policy with a given batch of data.

• post_process_fn(): update the buffer with a given batch of data.

• update(): the main interface for training. This function samples data from buffer, pre-process data (such
as computing n-step return), learn with the data, and finally post-process the data (such as updating prioritized
replay buffer); in short, process_fn -> learn -> post_process_fn.

States for policy

During the training process, the policy has two main states: training state and testing state. The training state can be
further divided into the collecting state and updating state.

The meaning of training and testing state is obvious: the agent interacts with environment, collects training data and
performs update, that’s training state; the testing state is to evaluate the performance of the current policy during
training process.

As for the collecting state, it is defined as interacting with environments and collecting training data into the buffer;
we define the updating state as performing a model update by update() during training process.

In order to distinguish these states, you can check the policy state by policy.training and policy.updating.
The state setting is as follows:

12 Chapter 1. Installation
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State for policy policy.training policy.updating
Training state Collecting state True False

Updating state True True
Testing state False False

policy.updating is helpful to distinguish the different exploration state, for example, in DQN we don’t have to
use epsilon-greedy in a pure network update, so policy.updating is helpful for setting epsilon in this case.

policy.forward

The forward function computes the action over given observations. The input and output is algorithm-specific but
generally, the function is a mapping of (batch, state, ...) -> batch.

The input batch is the environment data (e.g., observation, reward, done flag and info). It comes from either
collect() or sample(). The first dimension of all variables in the input batch should be equal to the batch-size.

The output is also a Batch which must contain “act” (action) and may contain “state” (hidden state of policy), “policy”
(the intermediate result of policy which needs to save into the buffer, see forward()), and some other algorithm-
specific keys.

For example, if you try to use your policy to evaluate one episode (and don’t want to use collect()), use the
following code-snippet:

# assume env is a gym.Env
obs, done = env.reset(), False
while not done:

batch = Batch(obs=[obs]) # the first dimension is batch-size
act = policy(batch).act[0] # policy.forward return a batch, use ".act" to

→˓extract the action
obs, rew, done, info = env.step(act)

Here, Batch(obs=[obs]) will automatically create the 0-dimension to be the batch-size. Otherwise, the network
cannot determine the batch-size.

policy.process_fn

The process_fn function computes some variables that depends on time-series. For example, compute the N-step
or GAE returns.

Take 2-step return DQN as an example. The 2-step return DQN compute each transition’s return as:

𝐺𝑡 = 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2 max
𝑎

𝑄(𝑠𝑡+2, 𝑎)

where 𝛾 is the discount factor, 𝛾 ∈ [0, 1]. Here is the pseudocode showing the training process without Tianshou
framework:

# pseudocode, cannot work
s = env.reset()
buffer = Buffer(size=10000)
agent = DQN()
for i in range(int(1e6)):

a = agent.compute_action(s)
s_, r, d, _ = env.step(a)
buffer.store(s, a, s_, r, d)
s = s_

(continues on next page)
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if i % 1000 == 0:
b_s, b_a, b_s_, b_r, b_d = buffer.get(size=64)
# compute 2-step returns. How?
b_ret = compute_2_step_return(buffer, b_r, b_d, ...)
# update DQN policy
agent.update(b_s, b_a, b_s_, b_r, b_d, b_ret)

Thus, we need a time-related interface for calculating the 2-step return. process_fn() finishes this work by
providing the replay buffer, the sample index, and the sample batch data. Since we store all the data in the order of
time, you can simply compute the 2-step return as:

class DQN_2step(BasePolicy):
"""some code"""

def process_fn(self, batch, buffer, indices):
buffer_len = len(buffer)
batch_2 = buffer[(indices + 2) % buffer_len]
# this will return a batch data where batch_2.obs is s_t+2
# we can also get s_t+2 through:
# batch_2_obs = buffer.obs[(indices + 2) % buffer_len]
# in short, buffer.obs[i] is equal to buffer[i].obs, but the former is more

→˓effecient.
Q = self(batch_2, eps=0) # shape: [batchsize, action_shape]
maxQ = Q.max(dim=-1)
batch.returns = batch.rew \

+ self._gamma * buffer.rew[(indices + 1) % buffer_len] \
+ self._gamma ** 2 * maxQ

return batch

This code does not consider the done flag, so it may not work very well. It shows two ways to get 𝑠𝑡+2 from the replay
buffer easily in process_fn().

For other method, you can check out tianshou.policy. We give the usage of policy class a high-level explanation in A
High-level Explanation.

1.2.4 Collector

The Collector enables the policy to interact with different types of environments conveniently.

collect() is the main method of Collector: it let the policy perform a specified number of step n_step or episode
n_episode and store the data in the replay buffer, then return the statistics of the collected data such as episode’s
total reward.

The general explanation is listed in A High-level Explanation. Other usages of collector are listed in Collector
documentation. Here are some example usages:

policy = PGPolicy(...) # or other policies if you wish
env = gym.make("CartPole-v0")

replay_buffer = ReplayBuffer(size=10000)

# here we set up a collector with a single environment
collector = Collector(policy, env, buffer=replay_buffer)

# the collector supports vectorized environments as well
vec_buffer = VectorReplayBuffer(total_size=10000, buffer_num=3)

(continues on next page)

14 Chapter 1. Installation



Tianshou, Release 0.4.4

(continued from previous page)

# buffer_num should be equal to (suggested) or larger than #envs
envs = DummyVectorEnv([lambda: gym.make("CartPole-v0") for _ in range(3)])
collector = Collector(policy, envs, buffer=vec_buffer)

# collect 3 episodes
collector.collect(n_episode=3)
# collect at least 2 steps
collector.collect(n_step=2)
# collect episodes with visual rendering ("render" is the sleep time between
# rendering consecutive frames)
collector.collect(n_episode=1, render=0.03)

There is also another type of collector AsyncCollector which supports asynchronous environment setting (for
those taking a long time to step). However, AsyncCollector only supports at least n_step or n_episode collection
due to the property of asynchronous environments.

1.2.5 Trainer

Once you have a collector and a policy, you can start writing the training method for your RL agent. Trainer, to be
honest, is a simple wrapper. It helps you save energy for writing the training loop. You can also construct your own
trainer: Train a Policy with Customized Codes.

Tianshou has three types of trainer: onpolicy_trainer() for on-policy algorithms such as Policy Gradient,
offpolicy_trainer() for off-policy algorithms such as DQN, and offline_trainer() for offline algo-
rithms such as BCQ. Please check out tianshou.trainer for the usage.

1.2.6 A High-level Explanation

We give a high-level explanation through the pseudocode used in section policy.process_fn:

# pseudocode, cannot work # methods in tianshou
s = env.reset()
buffer = Buffer(size=10000) # buffer = tianshou.
→˓data.ReplayBuffer(size=10000)
agent = DQN() # policy.__init__(...)
for i in range(int(1e6)): # done in trainer

a = agent.compute_action(s) # act = policy(batch,
→˓...).act

s_, r, d, _ = env.step(a) # collector.collect(..
→˓.)

buffer.store(s, a, s_, r, d) # collector.collect(..
→˓.)

s = s_ # collector.collect(..
→˓.)

if i % 1000 == 0: # done in trainer
# the following is

→˓done in policy.update(batch_size, buffer)
b_s, b_a, b_s_, b_r, b_d = buffer.get(size=64) # batch, indices =

→˓buffer.sample(batch_size)
# compute 2-step returns. How?
b_ret = compute_2_step_return(buffer, b_r, b_d, ...) # policy.process_

→˓fn(batch, buffer, indices)
# update DQN policy
agent.update(b_s, b_a, b_s_, b_r, b_d, b_ret) # policy.learn(batch,

→˓...) (continues on next page)
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1.2.7 Conclusion

So far, we go through the overall framework of Tianshou. Really simple, isn’t it?

1.3 Understand Batch

Batch is the internal data structure extensively used in Tianshou. It is designed to store and manipulate hierarchical
named tensors. This tutorial aims to help users correctly understand the concept and the behavior of Batch so that
users can make the best of Tianshou.

The tutorial has three parts. We first explain the concept of hierarchical named tensors, and introduce basic usage of
Batch, followed by advanced topics of Batch.

1.3.1 Hierarchical Named Tensors

The structure of a Batch shown by a tree

16 Chapter 1. Installation



Tianshou, Release 0.4.4

“Hierarchical named tensors” refers to a set of tensors where their names form a hierarchy. Suppose there are four
tensors [t1, t2, t3, t4] with names [name1, name2, name3, name4], where name1 and name2 be-
long to the same namespace name0, then the full name of tensor t1 is name0.name1. That is, the hierarchy lies in
the names of tensors.

We can describe the structure of hierarchical named tensors using a tree in the right. There is always a “virtual root”
node to represent the whole object; internal nodes are keys (names), and leaf nodes are values (scalars or tensors).

Hierarchical named tensors are needed because we have to deal with the heterogeneity of reinforcement learning
problems. The abstraction of RL is very simple, just:

state, reward, done = env.step(action)

reward and done are simple, they are mostly scalar values. However, the state and action vary with environ-
ments. For example, state can be simply a vector, a tensor, or a camera input combined with sensory input. In the
last case, it is natural to store them as hierarchical named tensors. This hierarchy can go beyond state and action:
we can store state, action, reward, and done together as hierarchical named tensors.

Note that, storing hierarchical named tensors is as easy as creating nested dictionary objects:

{
'done': done,
'reward': reward,
'state': {

'camera': camera,
'sensory': sensory

}
'action': {

'direct': direct,
'point_3d': point_3d,
'force': force,

}
}

The real problem is how to manipulate them, such as adding new transition tuples into replay buffer and dealing with
their heterogeneity. Batch is designed to easily create, store, and manipulate these hierarchical named tensors.

1.3.2 Basic Usages

Here we cover some basic usages of Batch, describing what Batch contains, how to construct Batch objects and
how to manipulate them.

What Does Batch Contain

The content of Batch objects can be defined by the following rules.

1. A Batch object can be an empty Batch(), or have at least one key-value pairs. Batch() can be used to
reserve keys, too. See Key Reservations for this advanced usage.

2. The keys are always strings (they are names of corresponding values).

3. The values can be scalars, tensors, or Batch objects. The recursive definition makes it possible to form a
hierarchy of batches.

4. Tensors are the most important values. In short, tensors are n-dimensional arrays of the same data type. We
support two types of tensors: PyTorch tensor type torch.Tensor and NumPy tensor type np.ndarray.
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5. Scalars are also valid values. A scalar is a single boolean, number, or object. They can be python scalar (False,
1, 2.3, None, 'hello') or NumPy scalar (np.bool_(True), np.int32(1), np.float64(2.3)).
They just shouldn’t be mixed up with Batch/dict/tensors.

Note: Batch cannot store dict objects, because internally Batch uses dict to store data. During construction,
dict objects will be automatically converted to Batch objects.

The data types of tensors are bool and numbers (any size of int and float as long as they are supported by NumPy
or PyTorch). Besides, NumPy supports ndarray of objects and we take advantage of this feature to store non-number
objects in Batch. If one wants to store data that are neither boolean nor numbers (such as strings and sets), they
can store the data in np.ndarray with the np.object data type. This way, Batch can store any type of python
objects.

Construction of Batch

There are two ways to construct a Batch object: from a dict, or using kwargs. Below are some code snippets.

>>> # directly passing a dict object (possibly nested) is ok
>>> data = Batch({'a': 4, 'b': [5, 5], 'c': '2312312'})
>>> # the list will automatically be converted to numpy array
>>> data.b
array([5, 5])
>>> data.b = np.array([3, 4, 5])
>>> print(data)
Batch(

a: 4,
b: array([3, 4, 5]),
c: '2312312',

)
>>> # a list of dict objects (possibly nested) will be automatically stacked
>>> data = Batch([{'a': 0.0, 'b': "hello"}, {'a': 1.0, 'b': "world"}])
>>> print(data)
Batch(

a: array([0., 1.]),
b: array(['hello', 'world'], dtype=object),

)

>>> # construct a Batch with keyword arguments
>>> data = Batch(a=[4, 4], b=[5, 5], c=[None, None])
>>> print(data)
Batch(

a: array([4, 4]),
b: array([5, 5]),
c: array([None, None], dtype=object),

)
>>> # combining keyword arguments and batch_dict works fine
>>> data = Batch({'a':[4, 4], 'b':[5, 5]}, c=[None, None]) # the first argument is a
→˓dict, and 'c' is a keyword argument
>>> print(data)
Batch(

a: array([4, 4]),
b: array([5, 5]),
c: array([None, None], dtype=object),

)

(continues on next page)
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>>> arr = np.zeros((3, 4))
>>> # By default, Batch only keeps the reference to the data, but it also supports
→˓data copying
>>> data = Batch(arr=arr, copy=True) # data.arr now is a copy of 'arr'

Data Manipulation With Batch

Users can access the internal data by b.key or b[key], where b.key finds the sub-tree with key as the root node.
If the result is a sub-tree with non-empty keys, the key-reference can be chained, i.e. b.key.key1.key2.key3.
When it reaches a leaf node, users get the data (scalars/tensors) stored in that Batch object.

>>> data = Batch(a=4, b=[5, 5])
>>> print(data.b)
[5 5]
>>> # obj.key is equivalent to obj["key"]
>>> print(data["a"])
4
>>> # iterating over data items like a dict is supported
>>> for key, value in data.items():
>>> print(f"{key}: {value}")
a: 4
b: [5, 5]
>>> # obj.keys() and obj.values() work just like dict.keys() and dict.values()
>>> for key in data.keys():
>>> print(f"{key}")
a
b
>>> # obj.update() behaves like dict.update()
>>> # this is the same as data.c = 1; data.c = 2; data.e = 3;
>>> data.update(c=1, d=2, e=3)
>>> print(data)
Batch(

a: 4,
b: array([5, 5]),
c: 1,
d: 2,
e: 3,

)

Note: If data is a dict object, for x in data iterates over keys in the dict. However, it has a different meaning
for Batch objects: for x in data iterates over data[0], data[1], ..., data[-1]. An example is
given below.

Batch also partially reproduces the NumPy ndarray APIs. It supports advanced slicing, such as batch[:, i] so
long as the slice is valid. Broadcast mechanism of NumPy works for Batch, too.

>>> # initialize Batch with tensors
>>> data = Batch(a=np.array([[0.0, 2.0], [1.0, 3.0]]), b=[[5, -5], [1, -2]])
>>> # if values have the same length/shape, that length/shape is used for this Batch
>>> # else, check the advanced topic for details
>>> print(len(data))
2
>>> print(data.shape)

(continues on next page)
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[2, 2]
>>> # access the first item of all the stored tensors, while keeping the structure of
→˓Batch
>>> print(data[0])
Batch(

a: array([0., 2.])
b: array([ 5, -5]),

)
>>> # iterates over ``data[0], data[1], ..., data[-1]``
>>> for sample in data:
>>> print(sample.a)
[0. 2.]
[1. 3.]

>>> # Advanced slicing works just fine
>>> # Arithmetic operations are passed to each value in the Batch, with broadcast
→˓enabled
>>> data[:, 1] += 1
>>> print(data)
Batch(

a: array([[0., 3.],
[1., 4.]]),

b: array([[ 5, -4]]),
)

>>> # amazingly, you can directly apply np.mean to a Batch object
>>> print(np.mean(data))
Batch(

a: 1.5,
b: -0.25,

)

>>> # directly converted to a list is also available
>>> list(data)
[Batch(

a: array([0., 3.]),
b: array([ 5, -4]),

),
Batch(

a: array([1., 4.]),
b: array([ 1, -1]),

)]

Stacking and concatenating multiple Batch instances, or split an instance into multiple batches, they are all easy
and intuitive in Tianshou. For now, we stick to the aggregation (stack/concatenate) of homogeneous (same structure)
batches. Stack/Concatenation of heterogeneous batches are discussed in Aggregation of Heterogeneous Batches.

>>> data_1 = Batch(a=np.array([0.0, 2.0]), b=5)
>>> data_2 = Batch(a=np.array([1.0, 3.0]), b=-5)
>>> data = Batch.stack((data_1, data_2))
>>> print(data)
Batch(

b: array([ 5, -5]),
a: array([[0., 2.],

[1., 3.]]),
)

(continues on next page)
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>>> # split supports random shuffling
>>> data_split = list(data.split(1, shuffle=False))
>>> print(list(data.split(1, shuffle=False)))
[Batch(

b: array([5]),
a: array([[0., 2.]]),

), Batch(
b: array([-5]),
a: array([[1., 3.]]),

)]
>>> data_cat = Batch.cat(data_split)
>>> print(data_cat)
Batch(

b: array([ 5, -5]),
a: array([[0., 2.],

[1., 3.]]),
)

1.3.3 Advanced Topics

From here on, this tutorial focuses on advanced topics of Batch, including key reservation, length/shape, and aggre-
gation of heterogeneous batches.

Key Reservations

The structure of a Batch with reserved keys
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In many cases, we know in the first place what keys we have, but we do not know the shape of values until we run the
environment. To deal with this, Tianshou supports key reservations: reserve a key and use a placeholder value.

The usage is easy: just use Batch() to be the value of reserved keys.

a = Batch(b=Batch()) # 'b' is a reserved key
# this is called hierarchical key reservation
a = Batch(b=Batch(c=Batch()), d=Batch()) # 'c' and 'd' are reserved key
# the structure of this last Batch is shown in the right figure
a = Batch(key1=tensor1, key2=tensor2, key3=Batch(key4=Batch(), key5=Batch()))

Still, we can use a tree (in the right) to show the structure of Batch objects with reserved keys, where reserved keys
are special internal nodes that do not have attached leaf nodes.

Note: Reserved keys mean that in the future there will eventually be values attached to them. The values can be
scalars, tensors, or even Batch objects. Understanding this is critical to understand the behavior of Batch when
dealing with heterogeneous Batches.

The introduction of reserved keys gives rise to the need to check if a key is reserved. Tianshou provides Batch.
is_empty to achieve this.

>>> Batch().is_empty()
True
>>> Batch(a=Batch(), b=Batch(c=Batch())).is_empty()
False
>>> Batch(a=Batch(), b=Batch(c=Batch())).is_empty(recurse=True)
True
>>> Batch(d=1).is_empty()
False
>>> Batch(a=np.float64(1.0)).is_empty()
False

The Batch.is_empty function has an option to decide whether to identify direct emptiness (just a Batch()) or
to identify recursive emptiness (a Batch object without any scalar/tensor leaf nodes).

Note: Do not get confused with Batch.is_empty and Batch.empty. Batch.empty and its in-place variant
Batch.empty_ are used to set some values to zeros or None. Check the API documentation for further details.

Length and Shape

The most common usage of Batch is to store a Batch of data. The term “Batch” comes from the deep learning
community to denote a mini-batch of sampled data from the whole dataset. In this regard, “Batch” typically means a
collection of tensors whose first dimensions are the same. Then the length of a Batch object is simply the batch-size.

If all the leaf nodes in a Batch object are tensors, but they have different lengths, they can be readily stored in Batch.
However, for Batch of this kind, the len(obj) seems a bit ambiguous. Currently, Tianshou returns the length of
the shortest tensor, but we strongly recommend that users do not use the len(obj) operator on Batch objects with
tensors of different lengths.

>>> data = Batch(a=[5., 4.], b=np.zeros((2, 3, 4)))
>>> data.shape
[2]
>>> len(data)

(continues on next page)
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2
>>> data[0].shape
[]
>>> len(data[0])
TypeError: Object of type 'Batch' has no len()

Note: Following the convention of scientific computation, scalars have no length. If there is any scalar leaf node in a
Batch object, an exception will occur when users call len(obj).

Besides, values of reserved keys are undetermined, so they have no length, neither. Or, to be specific, values of reserved
keys have lengths of any. When there is a mix of tensors and reserved keys, the latter will be ignored in len(obj)
and the minimum length of tensors is returned. When there is not any tensor in the Batch object, Tianshou raises an
exception, too.

The obj.shape attribute of Batch behaves somewhat similar to len(obj):

1. If all the leaf nodes in a Batch object are tensors with the same shape, that shape is returned.

2. If all the leaf nodes in a Batch object are tensors but they have different shapes, the minimum length of each
dimension is returned.

3. If there is any scalar value in a Batch object, obj.shape returns [].

4. The shape of reserved keys is undetermined, too. We treat their shape as [].

Aggregation of Heterogeneous Batches

In this section, we talk about aggregation operators (stack/concatenate) on heterogeneous Batch objects. The follow-
ing picture will give you an intuitive understanding of this behavior. It shows two examples of aggregation operators
with heterogeneous Batch. The shapes of tensors are annotated in the leaf nodes.

We only consider the heterogeneity in the structure of Batch objects. The aggregation operators are eventually done
by NumPy/PyTorch operators (np.stack, np.concatenate, torch.stack, torch.cat). Heterogeneity
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in values can fail these operators (such as stacking np.ndarray with torch.Tensor, or stacking tensors with
different shapes) and an exception will be raised.

The behavior is natural: for keys that are not shared across all batches, batches that do not have these keys will be
padded by zeros (or None if the data type is np.object). It can be written in the following scripts:

>>> # examples of stack: a is missing key `b`, and b is missing key `a`
>>> a = Batch(a=np.zeros([4, 4]), common=Batch(c=np.zeros([4, 5])))
>>> b = Batch(b=np.zeros([4, 6]), common=Batch(c=np.zeros([4, 5])))
>>> c = Batch.stack([a, b])
>>> c.a.shape
(2, 4, 4)
>>> c.b.shape
(2, 4, 6)
>>> c.common.c.shape
(2, 4, 5)
>>> # None or 0 is padded with appropriate shape
>>> data_1 = Batch(a=np.array([0.0, 2.0]))
>>> data_2 = Batch(a=np.array([1.0, 3.0]), b='done')
>>> data = Batch.stack((data_1, data_2))
>>> print(data)
Batch(

a: array([[0., 2.],
[1., 3.]]),

b: array([None, 'done'], dtype=object),
)
>>> # examples of cat: a is missing key `b`, and b is missing key `a`
>>> a = Batch(a=np.zeros([3, 4]), common=Batch(c=np.zeros([3, 5])))
>>> b = Batch(b=np.zeros([4, 3]), common=Batch(c=np.zeros([4, 5])))
>>> c = Batch.cat([a, b])
>>> c.a.shape
(7, 4)
>>> c.b.shape
(7, 3)
>>> c.common.c.shape
(7, 5)

However, there are some cases when batches are too heterogeneous that they cannot be aggregated:

>>> a = Batch(a=np.zeros([4, 4]))
>>> b = Batch(a=Batch(b=Batch()))
>>> # this will raise an exception
>>> c = Batch.stack([a, b])

Then how to determine if batches can be aggregated? Let’s rethink the purpose of reserved keys. What is the advantage
of a1=Batch(b=Batch()) over a2=Batch()? The only difference is that a1.b returns Batch() but a2.b
raises an exception. That’s to say, we reserve keys for attribute reference.

We say a key chain k=[key1, key2, ..., keyn] applies to b if the expression b.key1.key2.{...}.
keyn is valid, and the result is b[k].

For a set of Batch objects denoted as 𝑆, they can be aggregated if there exists a Batch object b satisfying the
following rules:

1. Key chain applicability: For any object bi in 𝑆, and any key chain k, if bi[k] is valid, then b[k] is valid.

2. Type consistency: If bi[k] is not Batch() (the last key in the key chain is not a reserved key), then the type
of b[k] should be the same as bi[k] (both should be scalar/tensor/non-empty Batch values).

The Batch object b satisfying these rules with the minimum number of keys determines the structure of aggregating
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𝑆. The values are relatively easy to define: for any key chain k that applies to b, b[k] is the stack/concatenation of
[bi[k] for bi in S] (if k does not apply to bi, the appropriate size of zeros or None are filled automatically).
If bi[k] are all Batch(), then the aggregation result is also an empty Batch().

Miscellaneous Notes

1. Batch is serializable and therefore Pickle compatible. Batch objects can be saved to disk and later restored
by the python pickle module. This pickle compatibility is especially important for distributed sampling from
environments.

>>> data = Batch(a=np.zeros((3, 4)))
>>> data.to_torch(dtype=torch.float32, device='cpu')
>>> print(data.a)
tensor([[0., 0., 0., 0.],

[0., 0., 0., 0.],
[0., 0., 0., 0.]])

>>> # data.to_numpy is also available
>>> data.to_numpy()

2. It is often the case that the observations returned from the environment are all NumPy ndarray but the policy
requires torch.Tensor for prediction and learning. In this regard, Tianshou provides helper functions to
convert the stored data in-place into Numpy arrays or Torch tensors.

3. obj.stack_([a, b]) is the same as Batch.stack([obj, a, b]), and obj.cat_([a, b]) is
the same as Batch.cat([obj, a, b]). Considering the frequent requirement of concatenating two
Batch objects, Tianshou also supports obj.cat_(a) to be an alias of obj.cat_([a]).

4. Batch.cat and Batch.cat_ does not support axis argument as np.concatenate and torch.cat
currently.

5. Batch.stack and Batch.stack_ support the axis argument so that one can stack batches besides the
first dimension. But be cautious, if there are keys that are not shared across all batches, stack with axis !=
0 is undefined, and will cause an exception currently.

1.4 Multi-Agent RL

In this section, we describe how to use Tianshou to implement multi-agent reinforcement learning. Specifically, we
will design an algorithm to learn how to play Tic Tac Toe (see the image below) against a random opponent.
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1.4.1 Tic-Tac-Toe Environment

The scripts are located at test/multiagent/. We have implemented a Tic-Tac-Toe environment inherit the
MultiAgentEnv that supports Tic-Tac-Toe of any scale. Let’s first explore the environment. The 3x3 Tic-Tac-
Toe is too easy, so we will focus on 6x6 Tic-Tac-Toe where 4 same signs in a row are considered to win.

>>> from tic_tac_toe_env import TicTacToeEnv # the module tic_tac_toe_env is in
→˓test/multiagent/
>>> board_size = 6 # the size of board size
>>> win_size = 4 # how many signs in a row are
→˓considered to win
>>>
>>> # This board has 6 rows and 6 cols (36 places in total)
>>> # Players place 'x' and 'o' in turn on the board
>>> # The player who first gets 4 consecutive 'x's or 'o's wins
>>>
>>> env = TicTacToeEnv(size=board_size, win_size=win_size)
>>> obs = env.reset()
>>> env.render() # render the empty board
board (step 0):
=================
===_ _ _ _ _ _===
===_ _ _ _ _ _===
===_ _ _ _ _ _===
===_ _ _ _ _ _===
===_ _ _ _ _ _===
===_ _ _ _ _ _===
=================
>>> print(obs) # let's see the shape of the
→˓observation
{'agent_id': 1,
'obs': array([[0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]], dtype=int32),

'mask': array([ True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True])}

The observation variable obs returned from the environment is a dict, with three keys agent_id, obs, mask.
This is a general structure in multi-agent RL where agents take turns. The meaning of these keys are:

• agent_id: the id of the current acting agent, where agent_id ∈ [1, 𝑁 ], N is the number of agents. In our
Tic-Tac-Toe case, N is 2. The agent_id starts at 1 because we reserve 0 for the environment itself. Sometimes
the developer may want to control the behavior of the environment, for example, to determine how to dispatch
cards in Poker.

• obs: the actual observation of the environment. In the Tic-Tac-Toe game above, the observation variable obs
is a np.ndarray with the shape of (6, 6). The values can be “0/1/-1”: 0 for empty, 1 for x, -1 for o. Agent 1
places x on the board, while agent 2 places o on the board.

• mask: the action mask in the current timestep. In board games or card games, the legal action set varies with
time. The mask is a boolean array. For Tic-Tac-Toe, index i means the place of i/N th row and i%N th column.
If mask[i] == True, the player can place an x or o at that position. Now the board is empty, so the mask
is all the true, contains all the positions on the board.
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Note: There is no special formulation of mask either in discrete action space or in continuous action space. You can
also use some action spaces like gym.spaces.Discrete or gym.spaces.Box to represent the available action
space. Currently, we use a boolean array.

Let’s play two steps to have an intuitive understanding of the environment.

>>> import numpy as np
>>> action = 0 # action is either an integer, or an
→˓np.ndarray with one element
>>> obs, reward, done, info = env.step(action) # the env.step follows the api of
→˓OpenAI Gym
>>> print(obs) # notice the change in the observation
{'agent_id': 2,
'obs': array([[1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]], dtype=int32),

'mask': array([False, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True])}}

>>> # reward has two items, one for each player: 1 for win, -1 for lose, and 0
→˓otherwise
>>> print(reward)
[0. 0.]
>>> print(done) # done indicates whether the game is
→˓over
False
>>> # info is always an empty dict in Tic-Tac-Toe, but may contain some useful
→˓information in environments other than Tic-Tac-Toe.
>>> print(info)
{}

One worth-noting case is that the game is over when there is only one empty position, rather than when there is no
position. This is because the player just has one choice (literally no choice) in this game.

>>> # omitted actions: 6, 1, 7, 2, 8
>>> obs, reward, done, info = env.step(3) # player 1 wins
>>> print((reward, done))
(array([ 1., -1.], dtype=float32), array(True))
>>> env.render() # 'X' and 'O' indicate the last action
board (step 7):
=================
===x x x X _ _===
===o o o _ _ _===
===_ _ _ _ _ _===
===_ _ _ _ _ _===
===_ _ _ _ _ _===
===_ _ _ _ _ _===
=================

After being familiar with the environment, let’s try to play with random agents first!
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1.4.2 Two Random Agent

The relationship between MultiAgentPolicyManager (Manager) and BasePolicy (Agent)

Tianshou already provides some builtin classes for multi-agent learning. You can check out the API documentation
for details. Here we use RandomPolicy and MultiAgentPolicyManager. The figure on the right gives an
intuitive explanation.

>>> from tianshou.data import Collector
>>> from tianshou.policy import RandomPolicy, MultiAgentPolicyManager
>>>
>>> # agents should be wrapped into one policy,
>>> # which is responsible for calling the acting agent correctly
>>> # here we use two random agents
>>> policy = MultiAgentPolicyManager([RandomPolicy(), RandomPolicy()])
>>>
>>> # use collectors to collect a episode of trajectories
>>> # the reward is a vector, so we need a scalar metric to monitor the training
>>> collector = Collector(policy, env)
>>>
>>> # you will see a long trajectory showing the board status at each timestep
>>> result = collector.collect(n_episode=1, render=.1)
(only show the last 3 steps)
board (step 20):
=================
===o x _ o o o===
===_ _ x _ _ x===

(continues on next page)
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(continued from previous page)

===x _ o o x _===
===O _ o o x _===
===x _ o _ _ _===
===x _ _ _ x x===
=================
board (step 21):
=================
===o x _ o o o===
===_ _ x _ _ x===
===x _ o o x _===
===o _ o o x _===
===x _ o X _ _===
===x _ _ _ x x===
=================
board (step 22):
=================
===o x _ o o o===
===_ O x _ _ x===
===x _ o o x _===
===o _ o o x _===
===x _ o x _ _===
===x _ _ _ x x===
=================

Random agents perform badly. In the above game, although agent 2 wins finally, it is clear that a smart agent 1 would
place an x at row 4 col 4 to win directly.

1.4.3 Train an MARL Agent

So let’s start to train our Tic-Tac-Toe agent! First, import some required modules.

import os
import torch
import argparse
import numpy as np
from copy import deepcopy
from torch.utils.tensorboard import SummaryWriter
from tianshou.utils import TensorboardLogger

from tianshou.env import DummyVectorEnv
from tianshou.utils.net.common import Net
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.policy import BasePolicy, RandomPolicy, DQNPolicy,
→˓MultiAgentPolicyManager

from tic_tac_toe_env import TicTacToeEnv

The explanation of each Tianshou class/function will be deferred to their first usages. Here we define some arguments
and hyperparameters of the experiment. The meaning of arguments is clear by just looking at their names.

def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=1626)
parser.add_argument('--eps-test', type=float, default=0.05)

(continues on next page)
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parser.add_argument('--eps-train', type=float, default=0.1)
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.9,

help='a smaller gamma favors earlier win')
parser.add_argument('--n-step', type=int, default=3)
parser.add_argument('--target-update-freq', type=int, default=320)
parser.add_argument('--epoch', type=int, default=20)
parser.add_argument('--step-per-epoch', type=int, default=5000)
parser.add_argument('--step-per-collect', type=int, default=10)
parser.add_argument('--update-per-step', type=float, default=0.1)
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--hidden-sizes', type=int,

nargs='*', default=[128, 128, 128, 128])
parser.add_argument('--training-num', type=int, default=10)
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.1)
parser.add_argument('--board-size', type=int, default=6)
parser.add_argument('--win-size', type=int, default=4)
parser.add_argument('--win-rate', type=float, default=0.9,

help='the expected winning rate')
parser.add_argument('--watch', default=False, action='store_true',

help='no training, watch the play of pre-trained models')
parser.add_argument('--agent-id', type=int, default=2,

help='the learned agent plays as the agent_id-th player.
→˓Choices are 1 and 2.')

parser.add_argument('--resume-path', type=str, default='',
help='the path of agent pth file for resuming from a pre-

→˓trained agent')
parser.add_argument('--opponent-path', type=str, default='',

help='the path of opponent agent pth file for resuming from a
→˓pre-trained agent')

parser.add_argument('--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')

return parser.parse_args()

The relationship between MultiAgentPolicyManager (Manager) and BasePolicy (Agent)
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The following get_agents function returns agents and their optimizers from either constructing a new policy, or
loading from disk, or using the pass-in arguments. For the models:

• The action model we use is an instance of Net, essentially a multi-layer perceptron with the ReLU activation
function;

• The network model is passed to a DQNPolicy , where actions are selected according to both the action mask
and their Q-values;

• The opponent can be either a random agent RandomPolicy that randomly chooses an action from legal
actions, or it can be a pre-trained DQNPolicy allowing learned agents to play with themselves.

Both agents are passed to MultiAgentPolicyManager, which is responsible to call the correct agent according
to the agent_id in the observation. MultiAgentPolicyManager also dispatches data to each agent according
to agent_id, so that each agent seems to play with a virtual single-agent environment.

Here it is:

def get_agents(
args=get_args(),
agent_learn=None, # BasePolicy
agent_opponent=None, # BasePolicy
optim=None, # torch.optim.Optimizer

): # return a tuple of (BasePolicy, torch.optim.Optimizer)

env = TicTacToeEnv(args.board_size, args.win_size)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n

if agent_learn is None:
(continues on next page)
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net = Net(args.state_shape, args.action_shape,
hidden_sizes=args.hidden_sizes, device=args.device).to(args.device)

if optim is None:
optim = torch.optim.Adam(net.parameters(), lr=args.lr)

agent_learn = DQNPolicy(
net, optim, args.gamma, args.n_step,
target_update_freq=args.target_update_freq)

if args.resume_path:
agent_learn.load_state_dict(torch.load(args.resume_path))

if agent_opponent is None:
if args.opponent_path:

agent_opponent = deepcopy(agent_learn)
agent_opponent.load_state_dict(torch.load(args.opponent_path))

else:
agent_opponent = RandomPolicy()

if args.agent_id == 1:
agents = [agent_learn, agent_opponent]

else:
agents = [agent_opponent, agent_learn]

policy = MultiAgentPolicyManager(agents)
return policy, optim

With the above preparation, we are close to the first learned agent. The following code is almost the same as the code
in the DQN tutorial.

args = get_args()

# ======== a test function that tests a pre-trained agent and exit ======
def watch(args=get_args(),

agent_learn=None, # BasePolicy
agent_opponent=None): # BasePolicy

env = TicTacToeEnv(args.board_size, args.win_size)
policy, optim = get_agents(

args, agent_learn=agent_learn, agent_opponent=agent_opponent)
policy.eval()
policy.policies[args.agent_id - 1].set_eps(args.eps_test)
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
print(f'Final reward: {result["rews"][:, args.agent_id - 1].mean()}, length:

→˓{result["lens"].mean()}')
if args.watch:

watch(args)
exit(0)

# ======== environment setup =========
env_func = lambda: TicTacToeEnv(args.board_size, args.win_size)
train_envs = DummyVectorEnv([env_func for _ in range(args.training_num)])
test_envs = DummyVectorEnv([env_func for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)

(continues on next page)
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# ======== agent setup =========
policy, optim = get_agents()

# ======== collector setup =========
buffer = VectorReplayBuffer(args.buffer_size, args.training_num)
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
test_collector = Collector(policy, test_envs, exploration_noise=True)
train_collector.collect(n_step=args.batch_size * args.training_num)

# ======== tensorboard logging setup =========
log_path = os.path.join(args.logdir, 'tic_tac_toe', 'dqn')
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
logger = TensorboardLogger(writer)

# ======== callback functions used during training =========

def save_fn(policy):
if hasattr(args, 'model_save_path'):

model_save_path = args.model_save_path
else:

model_save_path = os.path.join(
args.logdir, 'tic_tac_toe', 'dqn', 'policy.pth')

torch.save(
policy.policies[args.agent_id - 1].state_dict(),
model_save_path)

def stop_fn(mean_rewards):
return mean_rewards >= args.win_rate # 95% winning rate by default
# the default args.win_rate is 0.9, but the reward is [-1, 1]
# instead of [0, 1], so args.win_rate == 0.9 is equal to 95% win rate.

def train_fn(epoch, env_step):
policy.policies[args.agent_id - 1].set_eps(args.eps_train)

def test_fn(epoch, env_step):
policy.policies[args.agent_id - 1].set_eps(args.eps_test)

# the reward is a vector, we need a scalar metric to monitor the training.
# we choose the reward of the learning agent
def reward_metric(rews):

return rews[:, args.agent_id - 1]

# start training, this may require about three minutes
result = offpolicy_trainer(

policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.step_per_collect, args.test_num,
args.batch_size, train_fn=train_fn, test_fn=test_fn,
stop_fn=stop_fn, save_fn=save_fn, update_per_step=args.update_per_step,
logger=logger, test_in_train=False, reward_metric=reward_metric)

agent = policy.policies[args.agent_id - 1]
# let's watch the match!
watch(args, agent)

That’s it. By executing the code, you will see a progress bar indicating the progress of training. After about less than
1 minute, the agent has finished training, and you can see how it plays against the random agent. Here is an example:
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board (step 1):
=================
===_ _ _ X _ _===
===_ _ _ _ _ _===
===_ _ _ _ _ _===
===_ _ _ _ _ _===
===_ _ _ _ _ _===
===_ _ _ _ _ _===
=================
board (step 2):
=================
===_ _ _ x _ _===
===_ _ _ _ _ _===
===_ _ O _ _ _===
===_ _ _ _ _ _===
===_ _ _ _ _ _===
===_ _ _ _ _ _===
=================
board (step 3):
=================
===_ _ _ x _ _===
===_ _ _ _ _ _===
===_ _ o _ _ _===
===_ _ _ _ _ _===
===_ _ _ X _ _===
===_ _ _ _ _ _===
=================
board (step 4):
=================
===_ _ _ x _ _===
===_ _ _ _ _ _===
===_ _ o _ _ _===
===_ _ _ _ _ _===
===_ _ _ x _ _===
===_ _ O _ _ _===
=================
board (step 5):
=================
===_ _ _ x _ _===
===_ _ _ _ X _===
===_ _ o _ _ _===
===_ _ _ _ _ _===
===_ _ _ x _ _===
===_ _ o _ _ _===
=================
board (step 6):
=================
===_ _ _ x _ _===
===_ _ _ _ x _===
===_ _ o _ _ _===
===_ _ _ _ _ _===
===_ _ O x _ _===
===_ _ o _ _ _===
=================
board (step 7):
=================
===_ _ _ x _ X===

(continues on next page)
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===_ _ _ _ x _===
===_ _ o _ _ _===
===_ _ _ _ _ _===
===_ _ o x _ _===
===_ _ o _ _ _===
=================
board (step 8):
=================
===_ _ _ x _ x===
===_ _ _ _ x _===
===_ _ o _ _ _===
===_ _ _ _ O _===
===_ _ o x _ _===
===_ _ o _ _ _===
=================
board (step 9):
=================
===_ _ _ x _ x===
===_ _ _ _ x _===
===_ _ o _ _ _===
===_ _ _ _ o _===
===X _ o x _ _===
===_ _ o _ _ _===
=================
board (step 10):
=================
===_ _ _ x _ x===
===_ _ _ _ x _===
===_ _ o _ _ _===
===_ _ O _ o _===
===x _ o x _ _===
===_ _ o _ _ _===
=================
Final reward: 1.0, length: 10.0

Notice that, our learned agent plays the role of agent 2, placing o on the board. The agent performs pretty well against
the random opponent! It learns the rule of the game by trial and error, and learns that four consecutive o means
winning, so it does!

The above code can be executed in a python shell or can be saved as a script file (we have saved it in test/
multiagent/test_tic_tac_toe.py). In the latter case, you can train an agent by

$ python test_tic_tac_toe.py

By default, the trained agent is stored in log/tic_tac_toe/dqn/policy.pth. You can also make the trained
agent play against itself, by

$ python test_tic_tac_toe.py --watch --resume-path log/tic_tac_toe/dqn/policy.pth --
→˓opponent-path log/tic_tac_toe/dqn/policy.pth

Here is our output:

board (step 1):
=================
===_ _ _ _ _ _===
===_ _ _ _ _ _===
===_ _ X _ _ _===

(continues on next page)
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===_ _ _ _ _ _===
===_ _ _ _ _ _===
===_ _ _ _ _ _===
=================
board (step 2):
=================
===_ _ _ _ _ _===
===_ _ _ _ _ _===
===_ _ x _ _ _===
===_ _ _ _ _ _===
===_ _ _ _ _ _===
===_ _ O _ _ _===
=================
board (step 3):
=================
===_ _ _ _ _ _===
===_ _ X _ _ _===
===_ _ x _ _ _===
===_ _ _ _ _ _===
===_ _ _ _ _ _===
===_ _ o _ _ _===
=================
board (step 4):
=================
===_ _ _ _ _ _===
===_ _ x _ _ _===
===_ _ x _ _ _===
===_ _ _ _ _ _===
===_ _ _ _ _ _===
===_ _ o O _ _===
=================
board (step 5):
=================
===_ _ _ _ _ _===
===_ _ x _ _ _===
===_ _ x _ _ _===
===_ _ _ _ _ _===
===_ _ _ X _ _===
===_ _ o o _ _===
=================
board (step 6):
=================
===_ _ _ _ _ _===
===_ _ x _ _ _===
===_ _ x _ _ _===
===_ _ _ _ _ _===
===_ _ _ x _ _===
===_ _ o o O _===
=================
board (step 7):
=================
===_ _ _ _ _ _===
===_ _ x _ X _===
===_ _ x _ _ _===
===_ _ _ _ _ _===
===_ _ _ x _ _===
===_ _ o o o _===

(continues on next page)
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=================
board (step 8):
=================
===_ _ _ _ _ _===
===_ _ x _ x _===
===_ _ x _ _ _===
===O _ _ _ _ _===
===_ _ _ x _ _===
===_ _ o o o _===
=================
board (step 9):
=================
===_ _ _ _ _ _===
===_ _ x _ x _===
===_ _ x _ _ _===
===o _ _ X _ _===
===_ _ _ x _ _===
===_ _ o o o _===
=================
board (step 10):
=================
===_ O _ _ _ _===
===_ _ x _ x _===
===_ _ x _ _ _===
===o _ _ x _ _===
===_ _ _ x _ _===
===_ _ o o o _===
=================
board (step 11):
=================
===_ o _ _ _ _===
===_ _ x _ x _===
===_ _ x _ _ X===
===o _ _ x _ _===
===_ _ _ x _ _===
===_ _ o o o _===
=================
board (step 12):
=================
===_ o O _ _ _===
===_ _ x _ x _===
===_ _ x _ _ x===
===o _ _ x _ _===
===_ _ _ x _ _===
===_ _ o o o _===
=================
board (step 13):
=================
===_ o o _ _ _===
===_ _ x _ x _===
===_ _ x _ _ x===
===o _ _ x X _===
===_ _ _ x _ _===
===_ _ o o o _===
=================
board (step 14):
=================

(continues on next page)
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===O o o _ _ _===
===_ _ x _ x _===
===_ _ x _ _ x===
===o _ _ x x _===
===_ _ _ x _ _===
===_ _ o o o _===
=================
board (step 15):
=================
===o o o _ _ _===
===_ _ x _ x _===
===_ _ x _ _ x===
===o _ _ x x _===
===X _ _ x _ _===
===_ _ o o o _===
=================
board (step 16):
=================
===o o o _ _ _===
===_ O x _ x _===
===_ _ x _ _ x===
===o _ _ x x _===
===x _ _ x _ _===
===_ _ o o o _===
=================
board (step 17):
=================
===o o o _ _ _===
===_ o x _ x _===
===_ _ x _ _ x===
===o _ _ x x _===
===x _ X x _ _===
===_ _ o o o _===
=================
board (step 18):
=================
===o o o _ _ _===
===_ o x _ x _===
===_ _ x _ _ x===
===o _ _ x x _===
===x _ x x _ _===
===_ O o o o _===
=================

Well, although the learned agent plays well against the random agent, it is far away from intelligence.

Next, maybe you can try to build more intelligent agents by letting the agent learn from self-play, just like AlphaZero!

In this tutorial, we show an example of how to use Tianshou for multi-agent RL. Tianshou is a flexible and easy to use
RL library. Make the best of Tianshou by yourself!
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1.5 Logging Experiments

Tianshou comes with multiple experiment tracking and logging solutions to manage and reproduce your experiments.
The dashboard loggers currently available are:

• TensorboardLogger

• WandbLogger

• LazyLogger

1.5.1 TensorboardLogger

Tensorboard tracks your experiment metrics in a local dashboard. Here is how you can use TensorboardLogger in your
experiment:

from torch.utils.tensorboard import SummaryWriter
from tianshou.utils import TensorboardLogger

log_path = os.path.join(args.logdir, args.task, "dqn")
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
logger = TensorboardLogger(writer)
result = trainer(..., logger=logger)

1.5.2 WandbLogger

WandbLogger can be used to visualize your experiments in a hosted W&B dashboard. It can be installed via pip
install wandb. You can also save your checkpoints in the cloud and restore your runs from those checkpoints.
Here is how you can enable WandbLogger:

from tianshou.utils import WandbLogger

logger = WandbLogger(...)
result = trainer(..., logger=logger)

Please refer to WandbLogger documentation for advanced configuration.

For logging checkpoints on any device, you need to define a save_checkpoint_fn which saves the experiment
checkpoint and returns the path of the saved checkpoint:

def save_checkpoint_fn(epoch, env_step, gradient_step):
ckpt_path = ...
# save model
return ckpt_path

Then, use this function with WandbLogger to automatically version your experiment checkpoints after every
save_interval step.

For resuming runs from checkpoint artifacts on any device, pass the W&B run_id of the run that you want to
continue in WandbLogger. It will then download the latest version of the checkpoint and resume your runs from the
checkpoint.

The example scripts are under test_psrl.py and atari_dqn.py.
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1.5.3 LazyLogger

This is a place-holder logger that does nothing.

1.6 Benchmark

1.6.1 Mujoco Benchmark

Tianshou’s Mujoco benchmark contains state-of-the-art results (even better than SpinningUp!).

Please refer to https://github.com/thu-ml/tianshou/tree/master/examples/mujoco

1.6.2 Atari Benchmark

Please refer to https://github.com/thu-ml/tianshou/tree/master/examples/atari

1.7 Cheat Sheet

This page shows some code snippets of how to use Tianshou to develop new algorithms / apply algorithms to new
scenarios.

By the way, some of these issues can be resolved by using a gym.Wrapper. It could be a universal solution in the
policy-environment interaction. But you can also use the batch processor Handle Batched Data Stream in Collector.

1.7.1 Build Policy Network

See Build the Network.

1.7.2 Build New Policy

See BasePolicy .

1.7.3 Customize Training Process

See Train a Policy with Customized Codes.

1.7.4 Resume Training Process

This is related to Issue 349.

To resume training process from an existing checkpoint, you need to do the following things in the training process:

1. Make sure you write save_checkpoint_fn which saves everything needed in the training process, i.e.,
policy, optim, buffer; pass it to trainer;

2. Use TensorboardLogger;

3. To adjust the save frequency, specify save_interval when initializing TensorboardLogger.
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And to successfully resume from a checkpoint:

1. Load everything needed in the training process before trainer initialization, i.e., policy, optim, buffer;

2. Set resume_from_log=True with trainer;

We provide an example to show how these steps work: checkout test_c51.py, test_ppo.py or test_il_bcq.py by running

$ python3 test/discrete/test_c51.py # train some epoch
$ python3 test/discrete/test_c51.py --resume # restore from existing log and
→˓continuing training

To correctly render the data (including several tfevent files), we highly recommend using tensorboard >= 2.5.
0 (see here for the reason). Otherwise, it may cause overlapping issue that you need to manually handle with.

1.7.5 Parallel Sampling

Tianshou provides the following classes for parallel environment simulation:

• DummyVectorEnv is for pseudo-parallel simulation (implemented with a for-loop, useful for debugging).

• SubprocVectorEnv uses multiple processes for parallel simulation. This is the most often choice for parallel
simulation.

• ShmemVectorEnv has a similar implementation to SubprocVectorEnv , but is optimized (in terms of
both memory footprint and simulation speed) for environments with large observations such as images.

• RayVectorEnv is currently the only choice for parallel simulation in a cluster with multiple machines.

Although these classes are optimized for different scenarios, they have exactly the same APIs because they are sub-
classes of BaseVectorEnv . Just provide a list of functions who return environments upon called, and it is all
set.

env_fns = [lambda x=i: MyTestEnv(size=x) for i in [2, 3, 4, 5]]
venv = SubprocVectorEnv(env_fns) # DummyVectorEnv, ShmemVectorEnv, or RayVectorEnv,
→˓whichever you like.
venv.reset() # returns the initial observations of each environment
venv.step(actions) # provide actions for each environment and get their results

An example of sync/async VectorEnv (steps with the same color end up in one batch that is disposed by the
policy at the same time).
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By default, parallel environment simulation is synchronous: a step is done after all environments have finished a step.
Synchronous simulation works well if each step of environments costs roughly the same time.

In case the time cost of environments varies a lot (e.g. 90% step cost 1s, but 10% cost 10s) where slow environments
lag fast environments behind, async simulation can be used (related to Issue 103). The idea is to start those finished
environments without waiting for slow environments.

Asynchronous simulation is a built-in functionality of BaseVectorEnv . Just provide wait_num or timeout (or
both) and async simulation works.
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env_fns = [lambda x=i: MyTestEnv(size=x, sleep=x) for i in [2, 3, 4, 5]]
# DummyVectorEnv, ShmemVectorEnv, or RayVectorEnv, whichever you like.
venv = SubprocVectorEnv(env_fns, wait_num=3, timeout=0.2)
venv.reset() # returns the initial observations of each environment
# returns "wait_num" steps or finished steps after "timeout" seconds,
# whichever occurs first.
venv.step(actions, ready_id)

If we have 4 envs and set wait_num = 3, each of the step only returns 3 results of these 4 envs.

You can treat the timeout parameter as a dynamic wait_num. In each vectorized step it only returns the environ-
ments finished within the given time. If there is no such environment, it will wait until any of them finished.

The figure in the right gives an intuitive comparison among synchronous/asynchronous simulation.

Warning: If you use your own environment, please make sure the seed method is set up properly, e.g.,

def seed(self, seed):
np.random.seed(seed)

Otherwise, the outputs of these envs may be the same with each other.

1.7.6 Handle Batched Data Stream in Collector

This is related to Issue 42.

If you want to get log stat from data stream / pre-process batch-image / modify the reward with given env info, use
preproces_fn in Collector. This is a hook which will be called before the data adding into the buffer.

It will receive with “obs” and “env_id” when the collector resets the environment, and will receive six keys “obs_next”,
“rew”, “done”, “info”, “policy”, “env_id” in a normal env step. It returns either a dict or a Batch with the modified
keys and values.

These variables are intended to gather all the information requires to keep track of a simulation step, namely the
(observation, action, reward, done flag, next observation, info, intermediate result of the policy) at time t, for the
whole duration of the simulation.

For example, you can write your hook as:

import numpy as np
from collections import deque

class MyProcessor:
def __init__(self, size=100):

self.episode_log = None
self.main_log = deque(maxlen=size)
self.main_log.append(0)
self.baseline = 0

def preprocess_fn(**kwargs):
"""change reward to zero mean"""
# if obs && env_id exist -> reset
# if obs_next/act/rew/done/policy/env_id exist -> normal step
if 'rew' not in kwargs:

# means that it is called after env.reset(), it can only process the obs

(continues on next page)
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return Batch() # none of the variables are needed to be updated
else:

n = len(kwargs['rew']) # the number of envs in collector
if self.episode_log is None:

self.episode_log = [[] for i in range(n)]
for i in range(n):

self.episode_log[i].append(kwargs['rew'][i])
kwargs['rew'][i] -= self.baseline

for i in range(n):
if kwargs['done']:

self.main_log.append(np.mean(self.episode_log[i]))
self.episode_log[i] = []
self.baseline = np.mean(self.main_log)

return Batch(rew=kwargs['rew'])

And finally,

test_processor = MyProcessor(size=100)
collector = Collector(policy, env, buffer, preprocess_fn=test_processor.preprocess_fn)

Some examples are in test/base/test_collector.py.

1.7.7 RNN-style Training

This is related to Issue 19.

First, add an argument “stack_num” to ReplayBuffer, VectorReplayBuffer, or other types of buffer you are
using, like:

buf = ReplayBuffer(size=size, stack_num=stack_num)

Then, change the network to recurrent-style, for example, Recurrent, RecurrentActorProb and
RecurrentCritic.

The above code supports only stacked-observation. If you want to use stacked-action (for Q(stacked-s, stacked-a)),
stacked-reward, or other stacked variables, you can add a gym.Wrapper to modify the state representation. For
example, if we add a wrapper that map [s, a] pair to a new state:

• Before: (s, a, s', r, d) stored in replay buffer, and get stacked s;

• After applying wrapper: ([s, a], a, [s', a'], r, d) stored in replay buffer, and get both stacked s
and a.

1.7.8 Multi-GPU Training

To enable training an RL agent with multiple GPUs for a standard environment (i.e., without nested observation) with
default networks provided by Tianshou:

1. Import DataParallelNet from tianshou.utils.net.common;

2. Change the device argument to None in the existing networks such as Net, Actor, Critic, ActorProb

3. Apply DataParallelNet wrapper to these networks.
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from tianshou.utils.net.common import Net, DataParallelNet
from tianshou.utils.net.discrete import Actor, Critic

actor = DataParallelNet(Actor(net, args.action_shape, device=None).to(args.device))
critic = DataParallelNet(Critic(net, device=None).to(args.device))

Yes, that’s all! This general approach can be applied to almost all kinds of algorithms implemented in Tianshou. We
provide a complete script to show how to run multi-GPU: test/discrete/test_ppo.py

As for other cases such as customized network or environments that have a nested observation, here are the rules:

1. The data format transformation (numpy -> cuda) is done in the DataParallelNetwrapper; your customized
network should not apply any kinds of data format transformation;

2. Create a similar class that inherit DataParallelNet, which is only in charge of data format transformation
(numpy -> cuda);

3. Do the same things above.

1.7.9 User-defined Environment and Different State Representation

This is related to Issue 38 and Issue 69.

First of all, your self-defined environment must follow the Gym’s API, some of them are listed below:

• reset() -> state

• step(action) -> state, reward, done, info

• seed(s) -> List[int]

• render(mode) -> Any

• close() -> None

• observation_space: gym.Space

• action_space: gym.Space

The state can be a numpy.ndarray or a Python dictionary. Take “FetchReach-v1” as an example:

>>> e = gym.make('FetchReach-v1')
>>> e.reset()
{'observation': array([ 1.34183265e+00, 7.49100387e-01, 5.34722720e-01, 1.
→˓97805133e-04,

7.15193042e-05, 7.73933014e-06, 5.51992816e-08, -2.42927453e-06,
4.73325650e-06, -2.28455228e-06]),

'achieved_goal': array([1.34183265, 0.74910039, 0.53472272]),
'desired_goal': array([1.24073906, 0.77753463, 0.63457791])}

It shows that the state is a dictionary which has 3 keys. It will stored in ReplayBuffer as:

>>> from tianshou.data import Batch, ReplayBuffer
>>> b = ReplayBuffer(size=3)
>>> b.add(Batch(obs=e.reset(), act=0, rew=0, done=0))
>>> print(b)
ReplayBuffer(

act: array([0, 0, 0]),
done: array([False, False, False]),
obs: Batch(

(continues on next page)
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achieved_goal: array([[1.34183265, 0.74910039, 0.53472272],
[0. , 0. , 0. ],
[0. , 0. , 0. ]]),

desired_goal: array([[1.42154265, 0.62505137, 0.62929863],
[0. , 0. , 0. ],
[0. , 0. , 0. ]]),

observation: array([[ 1.34183265e+00, 7.49100387e-01, 5.34722720e-01,
1.97805133e-04, 7.15193042e-05, 7.73933014e-06,
5.51992816e-08, -2.42927453e-06, 4.73325650e-06,

-2.28455228e-06],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,

0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00],

[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00]]),

),
rew: array([0, 0, 0]),

)
>>> print(b.obs.achieved_goal)
[[1.34183265 0.74910039 0.53472272]
[0. 0. 0. ]
[0. 0. 0. ]]

And the data batch sampled from this replay buffer:

>>> batch, indices = b.sample(2)
>>> batch.keys()
['act', 'done', 'info', 'obs', 'obs_next', 'policy', 'rew']
>>> batch.obs[-1]
Batch(

achieved_goal: array([1.34183265, 0.74910039, 0.53472272]),
desired_goal: array([1.42154265, 0.62505137, 0.62929863]),
observation: array([ 1.34183265e+00, 7.49100387e-01, 5.34722720e-01, 1.

→˓97805133e-04,
7.15193042e-05, 7.73933014e-06, 5.51992816e-08, -2.

→˓42927453e-06,
4.73325650e-06, -2.28455228e-06]),

)
>>> batch.obs.desired_goal[-1] # recommended
array([1.42154265, 0.62505137, 0.62929863])
>>> batch.obs[-1].desired_goal # not recommended
array([1.42154265, 0.62505137, 0.62929863])
>>> batch[-1].obs.desired_goal # not recommended
array([1.42154265, 0.62505137, 0.62929863])

Thus, in your self-defined network, just change the forward function as:

def forward(self, s, ...):
# s is a batch
observation = s.observation
achieved_goal = s.achieved_goal
desired_goal = s.desired_goal
...
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For self-defined class, the replay buffer will store the reference into a numpy.ndarray, e.g.:

>>> import networkx as nx
>>> b = ReplayBuffer(size=3)
>>> b.add(Batch(obs=nx.Graph(), act=0, rew=0, done=0))
>>> print(b)
ReplayBuffer(

act: array([0, 0, 0]),
done: array([0, 0, 0]),
info: Batch(),
obs: array([<networkx.classes.graph.Graph object at 0x7f5c607826a0>, None,

None], dtype=object),
policy: Batch(),
rew: array([0, 0, 0]),

)

But the state stored in the buffer may be a shallow-copy. To make sure each of your state stored in the buffer is distinct,
please return the deep-copy version of your state in your env:

def reset():
return copy.deepcopy(self.graph)

def step(a):
...
return copy.deepcopy(self.graph), reward, done, {}

Note: Please make sure this variable is numpy-compatible, e.g., np.array([variable]) will not result in an empty array.
Otherwise, ReplayBuffer cannot create an numpy array to store it.

1.7.10 Multi-Agent Reinforcement Learning

This is related to Issue 121. The discussion is still goes on.

With the flexible core APIs, Tianshou can support multi-agent reinforcement learning with minimal efforts.

Currently, we support three types of multi-agent reinforcement learning paradigms:

1. Simultaneous move: at each timestep, all the agents take their actions (example: MOBA games)

2. Cyclic move: players take action in turn (example: Go game)

3. Conditional move, at each timestep, the environment conditionally selects an agent to take action. (example:
Pig Game)

We mainly address these multi-agent RL problems by converting them into traditional RL formulations.

For simultaneous move, the solution is simple: we can just add a num_agent dimension to state, action, and reward.
Nothing else is going to change.

For 2 & 3 (cyclic move and conditional move), they can be unified into a single framework: at each timestep, the
environment selects an agent with id agent_id to play. Since multi-agents are usually wrapped into one object
(which we call “abstract agent”), we can pass the agent_id to the “abstract agent”, leaving it to further call the
specific agent.

In addition, legal actions in multi-agent RL often vary with timestep (just like Go games), so the environment should
also passes the legal action mask to the “abstract agent”, where the mask is a boolean array that “True” for available
actions and “False” for illegal actions at the current step. Below is a figure that explains the abstract agent.
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The above description gives rise to the following formulation of multi-agent RL:

action = policy(state, agent_id, mask)
(next_state, next_agent_id, next_mask), reward = env.step(action)

By constructing a new state state_ = (state, agent_id, mask), essentially we can return to the typical
formulation of RL:

action = policy(state_)
next_state_, reward = env.step(action)

Following this idea, we write a tiny example of playing Tic Tac Toe against a random player by using a Q-learning
algorithm. The tutorial is at Multi-Agent RL.

1.8 tianshou.data

1.8.1 Batch

class tianshou.data.Batch(batch_dict: Optional[Union[dict, tianshou.data.batch.Batch, Se-
quence[Union[dict, tianshou.data.batch.Batch]], numpy.ndarray]] =
None, copy: bool = False, **kwargs: Any)

Bases: object

The internal data structure in Tianshou.

Batch is a kind of supercharged array (of temporal data) stored individually in a (recursive) dictionary of object
that can be either numpy array, torch tensor, or batch themselves. It is designed to make it extremely easily to
access, manipulate and set partial view of the heterogeneous data conveniently.

For a detailed description, please refer to Understand Batch.

__getitem__(index: Union[str, slice, int, numpy.ndarray, List[int]])→ Any
Return self[index].

__setitem__(index: Union[str, slice, int, numpy.ndarray, List[int]], value: Any)→ None
Assign value to self[index].
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to_numpy()→ None
Change all torch.Tensor to numpy.ndarray in-place.

to_torch(dtype: Optional[torch.dtype] = None, device: Union[str, int, torch.device] = 'cpu')→ None
Change all numpy.ndarray to torch.Tensor in-place.

cat_(batches: Union[tianshou.data.batch.Batch, Sequence[Union[dict, tianshou.data.batch.Batch]]])
→ None

Concatenate a list of (or one) Batch objects into current batch.

static cat(batches: Sequence[Union[dict, tianshou.data.batch.Batch]]) → tian-
shou.data.batch.Batch

Concatenate a list of Batch object into a single new batch.

For keys that are not shared across all batches, batches that do not have these keys will be padded by zeros
with appropriate shapes. E.g.

>>> a = Batch(a=np.zeros([3, 4]), common=Batch(c=np.zeros([3, 5])))
>>> b = Batch(b=np.zeros([4, 3]), common=Batch(c=np.zeros([4, 5])))
>>> c = Batch.cat([a, b])
>>> c.a.shape
(7, 4)
>>> c.b.shape
(7, 3)
>>> c.common.c.shape
(7, 5)

stack_(batches: Sequence[Union[dict, tianshou.data.batch.Batch]], axis: int = 0)→ None
Stack a list of Batch object into current batch.

static stack(batches: Sequence[Union[dict, tianshou.data.batch.Batch]], axis: int = 0) → tian-
shou.data.batch.Batch

Stack a list of Batch object into a single new batch.

For keys that are not shared across all batches, batches that do not have these keys will be padded by zeros.
E.g.

>>> a = Batch(a=np.zeros([4, 4]), common=Batch(c=np.zeros([4, 5])))
>>> b = Batch(b=np.zeros([4, 6]), common=Batch(c=np.zeros([4, 5])))
>>> c = Batch.stack([a, b])
>>> c.a.shape
(2, 4, 4)
>>> c.b.shape
(2, 4, 6)
>>> c.common.c.shape
(2, 4, 5)

Note: If there are keys that are not shared across all batches, stack with axis != 0 is undefined, and
will cause an exception.

empty_(index: Optional[Union[slice, int, numpy.ndarray, List[int]]] = None) → tian-
shou.data.batch.Batch

Return an empty Batch object with 0 or None filled.

If “index” is specified, it will only reset the specific indexed-data.

>>> data.empty_()
>>> print(data)
Batch(

(continues on next page)
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a: array([[0., 0.],
[0., 0.]]),

b: array([None, None], dtype=object),
)
>>> b={'c': [2., 'st'], 'd': [1., 0.]}
>>> data = Batch(a=[False, True], b=b)
>>> data[0] = Batch.empty(data[1])
>>> data
Batch(

a: array([False, True]),
b: Batch(

c: array([None, 'st']),
d: array([0., 0.]),

),
)

static empty(batch: tianshou.data.batch.Batch, index: Optional[Union[slice, int, numpy.ndarray,
List[int]]] = None)→ tianshou.data.batch.Batch

Return an empty Batch object with 0 or None filled.

The shape is the same as the given Batch.

update(batch: Optional[Union[dict, tianshou.data.batch.Batch]] = None, **kwargs: Any)→ None
Update this batch from another dict/Batch.

__len__()→ int
Return len(self).

is_empty(recurse: bool = False)→ bool
Test if a Batch is empty.

If recurse=True, it further tests the values of the object; else it only tests the existence of any key.

b.is_empty(recurse=True) is mainly used to distinguish Batch(a=Batch(a=Batch()))
and Batch(a=1). They both raise exceptions when applied to len(), but the former can be used
in cat, while the latter is a scalar and cannot be used in cat.

Another usage is in __len__, where we have to skip checking the length of recursively empty Batch.

>>> Batch().is_empty()
True
>>> Batch(a=Batch(), b=Batch(c=Batch())).is_empty()
False
>>> Batch(a=Batch(), b=Batch(c=Batch())).is_empty(recurse=True)
True
>>> Batch(d=1).is_empty()
False
>>> Batch(a=np.float64(1.0)).is_empty()
False

property shape
Return self.shape.

split(size: int, shuffle: bool = True, merge_last: bool = False)→ Iterator[tianshou.data.batch.Batch]
Split whole data into multiple small batches.

Parameters

• size (int) – divide the data batch with the given size, but one batch if the length of the
batch is smaller than “size”.
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• shuffle (bool) – randomly shuffle the entire data batch if it is True, otherwise remain
in the same. Default to True.

• merge_last (bool) – merge the last batch into the previous one. Default to False.

1.8.2 Buffer

ReplayBuffer

class tianshou.data.ReplayBuffer(size: int, stack_num: int = 1, ignore_obs_next: bool = False,
save_only_last_obs: bool = False, sample_avail: bool =
False, **kwargs: Any)

Bases: object

ReplayBuffer stores data generated from interaction between the policy and environment.

ReplayBuffer can be considered as a specialized form (or management) of Batch. It stores all the data in a batch
with circular-queue style.

For the example usage of ReplayBuffer, please check out Section Buffer in Basic concepts in Tianshou.

Parameters

• size (int) – the maximum size of replay buffer.

• stack_num (int) – the frame-stack sampling argument, should be greater than or equal
to 1. Default to 1 (no stacking).

• ignore_obs_next (bool) – whether to store obs_next. Default to False.

• save_only_last_obs (bool) – only save the last obs/obs_next when it has a shape of
(timestep, . . . ) because of temporal stacking. Default to False.

• sample_avail (bool) – the parameter indicating sampling only available index when
using frame-stack sampling method. Default to False.

__len__()→ int
Return len(self).

save_hdf5(path: str)→ None
Save replay buffer to HDF5 file.

classmethod load_hdf5(path: str, device: Optional[str] = None) → tian-
shou.data.buffer.base.ReplayBuffer

Load replay buffer from HDF5 file.

reset(keep_statistics: bool = False)→ None
Clear all the data in replay buffer and episode statistics.

set_batch(batch: tianshou.data.batch.Batch)→ None
Manually choose the batch you want the ReplayBuffer to manage.

unfinished_index()→ numpy.ndarray
Return the index of unfinished episode.

prev(index: Union[int, numpy.ndarray])→ numpy.ndarray
Return the index of previous transition.

The index won’t be modified if it is the beginning of an episode.

next(index: Union[int, numpy.ndarray])→ numpy.ndarray
Return the index of next transition.
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The index won’t be modified if it is the end of an episode.

update(buffer: tianshou.data.buffer.base.ReplayBuffer)→ numpy.ndarray
Move the data from the given buffer to current buffer.

Return the updated indices. If update fails, return an empty array.

add(batch: tianshou.data.batch.Batch, buffer_ids: Optional[Union[numpy.ndarray, List[int]]] = None)
→ Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]
Add a batch of data into replay buffer.

Parameters

• batch (Batch) – the input data batch. Its keys must belong to the 7 reserved keys, and
“obs”, “act”, “rew”, “done” is required.

• buffer_ids – to make consistent with other buffer’s add function; if it is not None, we
assume the input batch’s first dimension is always 1.

Return (current_index, episode_reward, episode_length, episode_start_index). If the episode is not fin-
ished, the return value of episode_length and episode_reward is 0.

sample_indices(batch_size: int)→ numpy.ndarray
Get a random sample of index with size = batch_size.

Return all available indices in the buffer if batch_size is 0; return an empty numpy array if batch_size < 0
or no available index can be sampled.

sample(batch_size: int)→ Tuple[tianshou.data.batch.Batch, numpy.ndarray]
Get a random sample from buffer with size = batch_size.

Return all the data in the buffer if batch_size is 0.

Returns Sample data and its corresponding index inside the buffer.

get(index: Union[int, List[int], numpy.ndarray], key: str, default_value: Optional[Any] = None,
stack_num: Optional[int] = None)→ Union[tianshou.data.batch.Batch, numpy.ndarray]
Return the stacked result.

E.g., if you set key = "obs", stack_num = 4, index = t, it returns the stacked result as
[obs[t-3], obs[t-2], obs[t-1], obs[t]].

Parameters

• index – the index for getting stacked data.

• key (str) – the key to get, should be one of the reserved_keys.

• default_value – if the given key’s data is not found and default_value is set, return
this default_value.

• stack_num (int) – Default to self.stack_num.

__getitem__(index: Union[slice, int, List[int], numpy.ndarray])→ tianshou.data.batch.Batch
Return a data batch: self[index].

If stack_num is larger than 1, return the stacked obs and obs_next with shape (batch, len, . . . ).
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PrioritizedReplayBuffer

class tianshou.data.PrioritizedReplayBuffer(size: int, alpha: float, beta: float,
weight_norm: bool = True, **kwargs: Any)

Bases: tianshou.data.buffer.base.ReplayBuffer

Implementation of Prioritized Experience Replay. arXiv:1511.05952.

Parameters

• alpha (float) – the prioritization exponent.

• beta (float) – the importance sample soft coefficient.

• weight_norm (bool) – whether to normalize returned weights with the maximum weight
value within the batch. Default to True.

See also:

Please refer to ReplayBuffer for other APIs’ usage.

init_weight(index: Union[int, numpy.ndarray])→ None

update(buffer: tianshou.data.buffer.base.ReplayBuffer)→ numpy.ndarray
Move the data from the given buffer to current buffer.

Return the updated indices. If update fails, return an empty array.

add(batch: tianshou.data.batch.Batch, buffer_ids: Optional[Union[numpy.ndarray, List[int]]] = None)
→ Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]
Add a batch of data into replay buffer.

Parameters

• batch (Batch) – the input data batch. Its keys must belong to the 7 reserved keys, and
“obs”, “act”, “rew”, “done” is required.

• buffer_ids – to make consistent with other buffer’s add function; if it is not None, we
assume the input batch’s first dimension is always 1.

Return (current_index, episode_reward, episode_length, episode_start_index). If the episode is not fin-
ished, the return value of episode_length and episode_reward is 0.

sample_indices(batch_size: int)→ numpy.ndarray
Get a random sample of index with size = batch_size.

Return all available indices in the buffer if batch_size is 0; return an empty numpy array if batch_size < 0
or no available index can be sampled.

get_weight(index: Union[int, numpy.ndarray])→ Union[float, numpy.ndarray]
Get the importance sampling weight.

The “weight” in the returned Batch is the weight on loss function to debias the sampling process (some
transition tuples are sampled more often so their losses are weighted less).

update_weight(index: numpy.ndarray, new_weight: Union[numpy.ndarray, torch.Tensor])→ None
Update priority weight by index in this buffer.

Parameters

• index (np.ndarray) – index you want to update weight.

• new_weight (np.ndarray) – new priority weight you want to update.
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__getitem__(index: Union[slice, int, List[int], numpy.ndarray])→ tianshou.data.batch.Batch
Return a data batch: self[index].

If stack_num is larger than 1, return the stacked obs and obs_next with shape (batch, len, . . . ).

set_beta(beta: float)→ None

ReplayBufferManager

class tianshou.data.ReplayBufferManager(buffer_list: List[tianshou.data.buffer.base.ReplayBuffer])
Bases: tianshou.data.buffer.base.ReplayBuffer

ReplayBufferManager contains a list of ReplayBuffer with exactly the same configuration.

These replay buffers have contiguous memory layout, and the storage space each buffer has is a shallow copy
of the topmost memory.

Parameters buffer_list – a list of ReplayBuffer needed to be handled.

See also:

Please refer to ReplayBuffer for other APIs’ usage.

__len__()→ int
Return len(self).

reset(keep_statistics: bool = False)→ None
Clear all the data in replay buffer and episode statistics.

set_batch(batch: tianshou.data.batch.Batch)→ None
Manually choose the batch you want the ReplayBuffer to manage.

unfinished_index()→ numpy.ndarray
Return the index of unfinished episode.

prev(index: Union[int, numpy.ndarray])→ numpy.ndarray
Return the index of previous transition.

The index won’t be modified if it is the beginning of an episode.

next(index: Union[int, numpy.ndarray])→ numpy.ndarray
Return the index of next transition.

The index won’t be modified if it is the end of an episode.

update(buffer: tianshou.data.buffer.base.ReplayBuffer)→ numpy.ndarray
The ReplayBufferManager cannot be updated by any buffer.

add(batch: tianshou.data.batch.Batch, buffer_ids: Optional[Union[numpy.ndarray, List[int]]] = None)
→ Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]
Add a batch of data into ReplayBufferManager.

Each of the data’s length (first dimension) must equal to the length of buffer_ids. By default buffer_ids is
[0, 1, . . . , buffer_num - 1].

Return (current_index, episode_reward, episode_length, episode_start_index). If the episode is not fin-
ished, the return value of episode_length and episode_reward is 0.

sample_indices(batch_size: int)→ numpy.ndarray
Get a random sample of index with size = batch_size.

Return all available indices in the buffer if batch_size is 0; return an empty numpy array if batch_size < 0
or no available index can be sampled.
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PrioritizedReplayBufferManager

class tianshou.data.PrioritizedReplayBufferManager(buffer_list: Se-
quence[tianshou.data.buffer.prio.PrioritizedReplayBuffer])

Bases: tianshou.data.buffer.prio.PrioritizedReplayBuffer, tianshou.data.
buffer.manager.ReplayBufferManager

PrioritizedReplayBufferManager contains a list of PrioritizedReplayBuffer with exactly the same configuration.

These replay buffers have contiguous memory layout, and the storage space each buffer has is a shallow copy
of the topmost memory.

Parameters buffer_list – a list of PrioritizedReplayBuffer needed to be handled.

See also:

Please refer to ReplayBuffer for other APIs’ usage.

VectorReplayBuffer

class tianshou.data.VectorReplayBuffer(total_size: int, buffer_num: int, **kwargs: Any)
Bases: tianshou.data.buffer.manager.ReplayBufferManager

VectorReplayBuffer contains n ReplayBuffer with the same size.

It is used for storing transition from different environments yet keeping the order of time.

Parameters

• total_size (int) – the total size of VectorReplayBuffer.

• buffer_num (int) – the number of ReplayBuffer it uses, which are under the same con-
figuration.

Other input arguments (stack_num/ignore_obs_next/save_only_last_obs/sample_avail) are the same as
ReplayBuffer.

See also:

Please refer to ReplayBuffer for other APIs’ usage.

PrioritizedVectorReplayBuffer

class tianshou.data.PrioritizedVectorReplayBuffer(total_size: int, buffer_num: int,
**kwargs: Any)

Bases: tianshou.data.buffer.manager.PrioritizedReplayBufferManager

PrioritizedVectorReplayBuffer contains n PrioritizedReplayBuffer with same size.

It is used for storing transition from different environments yet keeping the order of time.

Parameters

• total_size (int) – the total size of PrioritizedVectorReplayBuffer.

• buffer_num (int) – the number of PrioritizedReplayBuffer it uses, which are under the
same configuration.

Other input arguments (alpha/beta/stack_num/ignore_obs_next/save_only_last_obs/ sample_avail) are the same
as PrioritizedReplayBuffer.
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See also:

Please refer to ReplayBuffer for other APIs’ usage.

set_beta(beta: float)→ None

CachedReplayBuffer

class tianshou.data.CachedReplayBuffer(main_buffer: tian-
shou.data.buffer.base.ReplayBuffer,
cached_buffer_num: int, max_episode_length:
int)

Bases: tianshou.data.buffer.manager.ReplayBufferManager

CachedReplayBuffer contains a given main buffer and n cached buffers, cached_buffer_num *
ReplayBuffer(size=max_episode_length).

The memory layout is: | main_buffer | cached_buffers[0] | cached_buffers[1] | ..
. | cached_buffers[cached_buffer_num - 1] |.

The data is first stored in cached buffers. When an episode is terminated, the data will move to the main buffer
and the corresponding cached buffer will be reset.

Parameters

• main_buffer (ReplayBuffer) – the main buffer whose .update() function be-
haves normally.

• cached_buffer_num (int) – number of ReplayBuffer needs to be created for cached
buffer.

• max_episode_length (int) – the maximum length of one episode, used in each
cached buffer’s maxsize.

See also:

Please refer to ReplayBuffer for other APIs’ usage.

add(batch: tianshou.data.batch.Batch, buffer_ids: Optional[Union[numpy.ndarray, List[int]]] = None)
→ Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]
Add a batch of data into CachedReplayBuffer.

Each of the data’s length (first dimension) must equal to the length of buffer_ids. By default the buffer_ids
is [0, 1, . . . , cached_buffer_num - 1].

Return (current_index, episode_reward, episode_length, episode_start_index) with each of
the shape (len(buffer_ids), . . . ), where (current_index[i], episode_reward[i], episode_length[i],
episode_start_index[i]) refers to the cached_buffer_ids[i]th cached buffer’s corresponding episode
result.

1.8.3 Collector

Collector

class tianshou.data.Collector(policy: tianshou.policy.base.BasePolicy, env:
Union[gym.core.Env, tianshou.env.venvs.BaseVectorEnv], buffer:
Optional[tianshou.data.buffer.base.ReplayBuffer] = None, pre-
process_fn: Optional[Callable[[. . . ], tianshou.data.batch.Batch]]
= None, exploration_noise: bool = False)

Bases: object
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Collector enables the policy to interact with different types of envs with exact number of steps or episodes.

Parameters

• policy – an instance of the BasePolicy class.

• env – a gym.Env environment or an instance of the BaseVectorEnv class.

• buffer – an instance of the ReplayBuffer class. If set to None, it will not store the
data. Default to None.

• preprocess_fn (function) – a function called before the data has been added to the
buffer, see issue #42 and Handle Batched Data Stream in Collector. Default to None.

• exploration_noise (bool) – determine whether the action needs to be modified with
corresponding policy’s exploration noise. If so, “policy. exploration_noise(act, batch)” will
be called automatically to add the exploration noise into action. Default to False.

The “preprocess_fn” is a function called before the data has been added to the buffer with batch format. It will
receive only “obs” and “env_id” when the collector resets the environment, and will receive six keys “obs_next”,
“rew”, “done”, “info”, “policy” and “env_id” in a normal env step. It returns either a dict or a Batch with the
modified keys and values. Examples are in “test/base/test_collector.py”.

Note: Please make sure the given environment has a time limitation if using n_episode collect option.

reset()→ None
Reset all related variables in the collector.

reset_stat()→ None
Reset the statistic variables.

reset_buffer(keep_statistics: bool = False)→ None
Reset the data buffer.

reset_env()→ None
Reset all of the environments.

collect(n_step: Optional[int] = None, n_episode: Optional[int] = None, random: bool = False,
render: Optional[float] = None, no_grad: bool = True)→ Dict[str, Any]

Collect a specified number of step or episode.

To ensure unbiased sampling result with n_episode option, this function will first collect n_episode -
env_num episodes, then for the last env_num episodes, they will be collected evenly from each env.

Parameters

• n_step (int) – how many steps you want to collect.

• n_episode (int) – how many episodes you want to collect.

• random (bool) – whether to use random policy for collecting data. Default to False.

• render (float) – the sleep time between rendering consecutive frames. Default to
None (no rendering).

• no_grad (bool) – whether to retain gradient in policy.forward(). Default to True (no
gradient retaining).

Note: One and only one collection number specification is permitted, either n_step or n_episode.
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Returns

A dict including the following keys

• n/ep collected number of episodes.

• n/st collected number of steps.

• rews array of episode reward over collected episodes.

• lens array of episode length over collected episodes.

• idxs array of episode start index in buffer over collected episodes.

• rew mean of episodic rewards.

• len mean of episodic lengths.

• rew_std standard error of episodic rewards.

• len_std standard error of episodic lengths.

AsyncCollector

class tianshou.data.AsyncCollector(policy: tianshou.policy.base.BasePolicy, env:
tianshou.env.venvs.BaseVectorEnv, buffer: Op-
tional[tianshou.data.buffer.base.ReplayBuffer] =
None, preprocess_fn: Optional[Callable[[. . . ], tian-
shou.data.batch.Batch]] = None, exploration_noise: bool
= False)

Bases: tianshou.data.collector.Collector

Async Collector handles async vector environment.

The arguments are exactly the same as Collector, please refer to Collector for more detailed explanation.

reset_env()→ None
Reset all of the environments.

collect(n_step: Optional[int] = None, n_episode: Optional[int] = None, random: bool = False,
render: Optional[float] = None, no_grad: bool = True)→ Dict[str, Any]

Collect a specified number of step or episode with async env setting.

This function doesn’t collect exactly n_step or n_episode number of transitions. Instead, in order to support
async setting, it may collect more than given n_step or n_episode transitions and save into buffer.

Parameters

• n_step (int) – how many steps you want to collect.

• n_episode (int) – how many episodes you want to collect.

• random (bool) – whether to use random policy for collecting data. Default to False.

• render (float) – the sleep time between rendering consecutive frames. Default to
None (no rendering).

• no_grad (bool) – whether to retain gradient in policy.forward(). Default to True (no
gradient retaining).

Note: One and only one collection number specification is permitted, either n_step or n_episode.
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Returns

A dict including the following keys

• n/ep collected number of episodes.

• n/st collected number of steps.

• rews array of episode reward over collected episodes.

• lens array of episode length over collected episodes.

• idxs array of episode start index in buffer over collected episodes.

• rew mean of episodic rewards.

• len mean of episodic lengths.

• rew_std standard error of episodic rewards.

• len_std standard error of episodic lengths.

1.9 tianshou.env

1.9.1 VectorEnv

BaseVectorEnv

class tianshou.env.BaseVectorEnv(env_fns: List[Callable[], gym.core.Env]], worker_fn:
Callable[[Callable[], gym.core.Env]], tian-
shou.env.worker.base.EnvWorker], wait_num: Op-
tional[int] = None, timeout: Optional[float] =
None, norm_obs: bool = False, obs_rms: Op-
tional[tianshou.utils.statistics.RunningMeanStd] = None,
update_obs_rms: bool = True)

Bases: gym.core.Env

Base class for vectorized environments wrapper.

Usage:

env_num = 8
envs = DummyVectorEnv([lambda: gym.make(task) for _ in range(env_num)])
assert len(envs) == env_num

It accepts a list of environment generators. In other words, an environment generator efn of a specific task
means that efn() returns the environment of the given task, for example, gym.make(task).

All of the VectorEnv must inherit BaseVectorEnv . Here are some other usages:

envs.seed(2) # which is equal to the next line
envs.seed([2, 3, 4, 5, 6, 7, 8, 9]) # set specific seed for each env
obs = envs.reset() # reset all environments
obs = envs.reset([0, 5, 7]) # reset 3 specific environments
obs, rew, done, info = envs.step([1] * 8) # step synchronously
envs.render() # render all environments
envs.close() # close all environments
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Warning: If you use your own environment, please make sure the seed method is set up properly, e.g.,

def seed(self, seed):
np.random.seed(seed)

Otherwise, the outputs of these envs may be the same with each other.

Parameters

• env_fns – a list of callable envs, env_fns[i]() generates the i-th env.

• worker_fn – a callable worker, worker_fn(env_fns[i]) generates a worker which
contains the i-th env.

• wait_num (int) – use in asynchronous simulation if the time cost of env.step varies
with time and synchronously waiting for all environments to finish a step is time-wasting.
In that case, we can return when wait_num environments finish a step and keep on sim-
ulation in these environments. If None, asynchronous simulation is disabled; else, 1 <=
wait_num <= env_num.

• timeout (float) – use in asynchronous simulation same as above, in each vectorized
step it only deal with those environments spending time within timeout seconds.

• norm_obs (bool) – Whether to track mean/std of data and normalize observation on
return. For now, observation normalization only support observation of type np.ndarray.

• obs_rms – class to track mean&std of observation. If not given, it will initialize a new one.
Usually in envs that is used to evaluate algorithm, obs_rms should be passed in. Default to
None.

• update_obs_rms (bool) – Whether to update obs_rms. Default to True.

__len__()→ int
Return len(self), which is the number of environments.

reset(id: Optional[Union[int, List[int], numpy.ndarray]] = None)→ numpy.ndarray
Reset the state of some envs and return initial observations.

If id is None, reset the state of all the environments and return initial observations, otherwise reset the
specific environments with the given id, either an int or a list.

step(action: numpy.ndarray, id: Optional[Union[int, List[int], numpy.ndarray]] = None) → Tu-
ple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

Run one timestep of some environments’ dynamics.

If id is None, run one timestep of all the environments’ dynamics; otherwise run one timestep for some
environments with given id, either an int or a list. When the end of episode is reached, you are responsible
for calling reset(id) to reset this environment’s state.

Accept a batch of action and return a tuple (batch_obs, batch_rew, batch_done, batch_info) in numpy
format.

Parameters action (numpy.ndarray) – a batch of action provided by the agent.

Returns

A tuple including four items:

• obs a numpy.ndarray, the agent’s observation of current environments

• rew a numpy.ndarray, the amount of rewards returned after previous actions
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• done a numpy.ndarray, whether these episodes have ended, in which case further step()
calls will return undefined results

• info a numpy.ndarray, contains auxiliary diagnostic information (helpful for debugging,
and sometimes learning)

For the async simulation:

Provide the given action to the environments. The action sequence should correspond to the id argument,
and the id argument should be a subset of the env_id in the last returned info (initially they are env_ids
of all the environments). If action is None, fetch unfinished step() calls instead.

seed(seed: Optional[Union[int, List[int]]] = None)→ List[Optional[List[int]]]
Set the seed for all environments.

Accept None, an int (which will extend i to [i, i + 1, i + 2, ...]) or a list.

Returns The list of seeds used in this env’s random number generators. The first value in the list
should be the “main” seed, or the value which a reproducer pass to “seed”.

render(**kwargs: Any)→ List[Any]
Render all of the environments.

close()→ None
Close all of the environments.

This function will be called only once (if not, it will be called during garbage collected). This way, close
of all workers can be assured.

normalize_obs(obs: numpy.ndarray)→ numpy.ndarray
Normalize observations by statistics in obs_rms.

DummyVectorEnv

class tianshou.env.DummyVectorEnv(env_fns: List[Callable[], gym.core.Env]], **kwargs: Any)
Bases: tianshou.env.venvs.BaseVectorEnv

Dummy vectorized environment wrapper, implemented in for-loop.

See also:

Please refer to BaseVectorEnv for other APIs’ usage.

SubprocVectorEnv

class tianshou.env.SubprocVectorEnv(env_fns: List[Callable[], gym.core.Env]], **kwargs:
Any)

Bases: tianshou.env.venvs.BaseVectorEnv

Vectorized environment wrapper based on subprocess.

See also:

Please refer to BaseVectorEnv for other APIs’ usage.
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ShmemVectorEnv

class tianshou.env.ShmemVectorEnv(env_fns: List[Callable[], gym.core.Env]], **kwargs: Any)
Bases: tianshou.env.venvs.BaseVectorEnv

Optimized SubprocVectorEnv with shared buffers to exchange observations.

ShmemVectorEnv has exactly the same API as SubprocVectorEnv.

See also:

Please refer to BaseVectorEnv for other APIs’ usage.

RayVectorEnv

class tianshou.env.RayVectorEnv(env_fns: List[Callable[], gym.core.Env]], **kwargs: Any)
Bases: tianshou.env.venvs.BaseVectorEnv

Vectorized environment wrapper based on ray.

This is a choice to run distributed environments in a cluster.

See also:

Please refer to BaseVectorEnv for other APIs’ usage.

1.9.2 Worker

EnvWorker

class tianshou.env.worker.EnvWorker(env_fn: Callable[], gym.core.Env])
Bases: abc.ABC

An abstract worker for an environment.

abstract reset()→ Any

abstract send_action(action: numpy.ndarray)→ None

get_result()→ Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

step(action: numpy.ndarray) → Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray,
numpy.ndarray]

Perform one timestep of the environment’s dynamic.

“send_action” and “get_result” are coupled in sync simulation, so typically users only call “step” function.
But they can be called separately in async simulation, i.e. someone calls “send_action” first, and calls
“get_result” later.

static wait(workers: List[tianshou.env.worker.base.EnvWorker], wait_num: int, timeout: Op-
tional[float] = None)→ List[tianshou.env.worker.base.EnvWorker]

Given a list of workers, return those ready ones.

seed(seed: Optional[int] = None)→ Optional[List[int]]

abstract render(**kwargs: Any)→ Any
Render the environment.

abstract close_env()→ None

close()→ None
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DummyEnvWorker

class tianshou.env.worker.DummyEnvWorker(env_fn: Callable[], gym.core.Env])
Bases: tianshou.env.worker.base.EnvWorker

Dummy worker used in sequential vector environments.

reset()→ Any

static wait(workers: List[tianshou.env.worker.dummy.DummyEnvWorker], wait_num: int, timeout:
Optional[float] = None)→ List[tianshou.env.worker.dummy.DummyEnvWorker]

Given a list of workers, return those ready ones.

send_action(action: numpy.ndarray)→ None

seed(seed: Optional[int] = None)→ List[int]

render(**kwargs: Any)→ Any
Render the environment.

close_env()→ None

SubprocEnvWorker

class tianshou.env.worker.SubprocEnvWorker(env_fn: Callable[], gym.core.Env],
share_memory: bool = False)

Bases: tianshou.env.worker.base.EnvWorker

Subprocess worker used in SubprocVectorEnv and ShmemVectorEnv.

reset()→ Any

static wait(workers: List[tianshou.env.worker.subproc.SubprocEnvWorker], wait_num: int, time-
out: Optional[float] = None)→ List[tianshou.env.worker.subproc.SubprocEnvWorker]

Given a list of workers, return those ready ones.

send_action(action: numpy.ndarray)→ None

get_result()→ Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

seed(seed: Optional[int] = None)→ Optional[List[int]]

render(**kwargs: Any)→ Any
Render the environment.

close_env()→ None

RayEnvWorker

class tianshou.env.worker.RayEnvWorker(env_fn: Callable[], gym.core.Env])
Bases: tianshou.env.worker.base.EnvWorker

Ray worker used in RayVectorEnv.

reset()→ Any

static wait(workers: List[tianshou.env.worker.ray.RayEnvWorker], wait_num: int, timeout: Op-
tional[float] = None)→ List[tianshou.env.worker.ray.RayEnvWorker]

Given a list of workers, return those ready ones.

send_action(action: numpy.ndarray)→ None

get_result()→ Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]

1.9. tianshou.env 63



Tianshou, Release 0.4.4

seed(seed: Optional[int] = None)→ List[int]

render(**kwargs: Any)→ Any
Render the environment.

close_env()→ None

1.10 tianshou.policy

1.10.1 Base

class tianshou.policy.BasePolicy(observation_space: Optional[gym.spaces.space.Space] =
None, action_space: Optional[gym.spaces.space.Space] =
None, action_scaling: bool = False, action_bound_method:
str = '')

Bases: abc.ABC, torch.nn.modules.module.Module

The base class for any RL policy.

Tianshou aims to modularize RL algorithms. It comes into several classes of policies in Tianshou. All of the
policy classes must inherit BasePolicy .

A policy class typically has the following parts:

• __init__(): initialize the policy, including coping the target network and so on;

• forward(): compute action with given observation;

• process_fn(): pre-process data from the replay buffer (this function can interact with replay buffer);

• learn(): update policy with a given batch of data.

• post_process_fn(): update the replay buffer from the learning process (e.g., prioritized replay buffer
needs to update the weight);

• update(): the main interface for training, i.e., process_fn -> learn -> post_process_fn.

Most of the policy needs a neural network to predict the action and an optimizer to optimize the policy. The
rules of self-defined networks are:

1. Input: observation “obs” (may be a numpy.ndarray, a torch.Tensor, a dict or any others), hidden
state “state” (for RNN usage), and other information “info” provided by the environment.

2. Output: some “logits”, the next hidden state “state”, and the intermediate result during policy forwarding
procedure “policy”. The “logits” could be a tuple instead of a torch.Tensor. It depends on how
the policy process the network output. For example, in PPO, the return of the network might be (mu,
sigma), state for Gaussian policy. The “policy” can be a Batch of torch.Tensor or other things, which
will be stored in the replay buffer, and can be accessed in the policy update process (e.g. in “policy.learn()”,
the “batch.policy” is what you need).

Since BasePolicy inherits torch.nn.Module, you can use BasePolicy almost the same as torch.
nn.Module, for instance, loading and saving the model:

torch.save(policy.state_dict(), "policy.pth")
policy.load_state_dict(torch.load("policy.pth"))

set_agent_id(agent_id: int)→ None
Set self.agent_id = agent_id, for MARL.
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exploration_noise(act: Union[numpy.ndarray, tianshou.data.batch.Batch], batch: tian-
shou.data.batch.Batch)→ Union[numpy.ndarray, tianshou.data.batch.Batch]

Modify the action from policy.forward with exploration noise.

Parameters

• act – a data batch or numpy.ndarray which is the action taken by policy.forward.

• batch – the input batch for policy.forward, kept for advanced usage.

Returns action in the same form of input “act” but with added exploration noise.

abstract forward(batch: tianshou.data.batch.Batch, state: Optional[Union[dict, tian-
shou.data.batch.Batch, numpy.ndarray]] = None, **kwargs: Any) →
tianshou.data.batch.Batch

Compute action over the given batch data.

Returns

A Batch which MUST have the following keys:

• act an numpy.ndarray or a torch.Tensor, the action over given batch data.

• state a dict, an numpy.ndarray or a torch.Tensor, the internal state of the policy, None
as default.

Other keys are user-defined. It depends on the algorithm. For example,

# some code
return Batch(logits=..., act=..., state=None, dist=...)

The keyword policy is reserved and the corresponding data will be stored into the replay buffer. For
instance,

# some code
return Batch(..., policy=Batch(log_prob=dist.log_prob(act)))
# and in the sampled data batch, you can directly use
# batch.policy.log_prob to get your data.

Note: In continuous action space, you should do another step “map_action” to get the real action:

act = policy(batch).act # doesn't map to the target action range
act = policy.map_action(act, batch)

map_action(act: Union[tianshou.data.batch.Batch, numpy.ndarray]) →
Union[tianshou.data.batch.Batch, numpy.ndarray]

Map raw network output to action range in gym’s env.action_space.

This function is called in collect() and only affects action sending to env. Remapped action will not
be stored in buffer and thus can be viewed as a part of env (a black box action transformation).

Action mapping includes 2 standard procedures: bounding and scaling. Bounding procedure expects
original action range is (-inf, inf) and maps it to [-1, 1], while scaling procedure expects original action
range is (-1, 1) and maps it to [action_space.low, action_space.high]. Bounding procedure is applied first.

Parameters act – a data batch or numpy.ndarray which is the action taken by policy.forward.

Returns action in the same form of input “act” but remap to the target action space.

process_fn(batch: tianshou.data.batch.Batch, buffer: tianshou.data.buffer.base.ReplayBuffer, in-
dices: numpy.ndarray)→ tianshou.data.batch.Batch

Pre-process the data from the provided replay buffer.
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Used in update(). Check out policy.process_fn for more information.

abstract learn(batch: tianshou.data.batch.Batch, **kwargs: Any)→ Dict[str, Any]
Update policy with a given batch of data.

Returns A dict, including the data needed to be logged (e.g., loss).

Note: In order to distinguish the collecting state, updating state and testing state, you can check the policy
state by self.training and self.updating. Please refer to States for policy for more detailed
explanation.

Warning: If you use torch.distributions.Normal and torch.distributions.
Categorical to calculate the log_prob, please be careful about the shape: Categorical distribu-
tion gives “[batch_size]” shape while Normal distribution gives “[batch_size, 1]” shape. The auto-
broadcasting of numerical operation with torch tensors will amplify this error.

post_process_fn(batch: tianshou.data.batch.Batch, buffer: tianshou.data.buffer.base.ReplayBuffer,
indices: numpy.ndarray)→ None

Post-process the data from the provided replay buffer.

Typical usage is to update the sampling weight in prioritized experience replay. Used in update().

update(sample_size: int, buffer: Optional[tianshou.data.buffer.base.ReplayBuffer], **kwargs: Any)
→ Dict[str, Any]

Update the policy network and replay buffer.

It includes 3 function steps: process_fn, learn, and post_process_fn. In addition, this function will change
the value of self.updating: it will be False before this function and will be True when executing
update(). Please refer to States for policy for more detailed explanation.

Parameters

• sample_size (int) – 0 means it will extract all the data from the buffer, otherwise it
will sample a batch with given sample_size.

• buffer (ReplayBuffer) – the corresponding replay buffer.

Returns A dict, including the data needed to be logged (e.g., loss) from policy.learn().

static value_mask(buffer: tianshou.data.buffer.base.ReplayBuffer, indices: numpy.ndarray) →
numpy.ndarray

Value mask determines whether the obs_next of buffer[indices] is valid.

For instance, usually “obs_next” after “done” flag is considered to be invalid, and its q/advantage value
can provide meaningless (even misleading) information, and should be set to 0 by hand. But if “done”
flag is generated because timelimit of game length (info[“TimeLimit.truncated”] is set to True in gym’s
settings), “obs_next” will instead be valid. Value mask is typically used for assisting in calculating the
correct q/advantage value.

Parameters

• buffer (ReplayBuffer) – the corresponding replay buffer.

• indices (numpy.ndarray) – indices of replay buffer whose “obs_next” will be
judged.

Returns A bool type numpy.ndarray in the same shape with indices. “True” means “obs_next”
of that buffer[indices] is valid.
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static compute_episodic_return(batch: tianshou.data.batch.Batch, buffer: tian-
shou.data.buffer.base.ReplayBuffer, indices:
numpy.ndarray, v_s_: Optional[Union[numpy.ndarray,
torch.Tensor]] = None, v_s: Op-
tional[Union[numpy.ndarray, torch.Tensor]] = None,
gamma: float = 0.99, gae_lambda: float = 0.95) →
Tuple[numpy.ndarray, numpy.ndarray]

Compute returns over given batch.

Use Implementation of Generalized Advantage Estimator (arXiv:1506.02438) to calculate q/advantage
value of given batch.

Parameters

• batch (Batch) – a data batch which contains several episodes of data in sequential
order. Mind that the end of each finished episode of batch should be marked by done flag,
unfinished (or collecting) episodes will be recognized by buffer.unfinished_index().

• indices (numpy.ndarray) – tell batch’s location in buffer, batch is equal to
buffer[indices].

• v_s (np.ndarray) – the value function of all next states 𝑉 (𝑠′).

• gamma (float) – the discount factor, should be in [0, 1]. Default to 0.99.

• gae_lambda (float) – the parameter for Generalized Advantage Estimation, should
be in [0, 1]. Default to 0.95.

Returns two numpy arrays (returns, advantage) with each shape (bsz, ).

static compute_nstep_return(batch: tianshou.data.batch.Batch, buffer: tian-
shou.data.buffer.base.ReplayBuffer, indice: numpy.ndarray,
target_q_fn: Callable[[tianshou.data.buffer.base.ReplayBuffer,
numpy.ndarray], torch.Tensor], gamma: float = 0.99, n_step:
int = 1, rew_norm: bool = False)→ tianshou.data.batch.Batch

Compute n-step return for Q-learning targets.

𝐺𝑡 =

𝑡+𝑛−1∑︁
𝑖=𝑡

𝛾𝑖−𝑡(1− 𝑑𝑖)𝑟𝑖 + 𝛾𝑛(1− 𝑑𝑡+𝑛)𝑄target(𝑠𝑡+𝑛)

where 𝛾 is the discount factor, 𝛾 ∈ [0, 1], 𝑑𝑡 is the done flag of step 𝑡.

Parameters

• batch (Batch) – a data batch, which is equal to buffer[indice].

• buffer (ReplayBuffer) – the data buffer.

• target_q_fn (function) – a function which compute target Q value of “obs_next”
given data buffer and wanted indices.

• gamma (float) – the discount factor, should be in [0, 1]. Default to 0.99.

• n_step (int) – the number of estimation step, should be an int greater than 0. Default
to 1.

• rew_norm (bool) – normalize the reward to Normal(0, 1), Default to False.

Returns a Batch. The result will be stored in batch.returns as a torch.Tensor with the same shape
as target_q_fn’s return tensor.

training: bool
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class tianshou.policy.RandomPolicy(observation_space: Optional[gym.spaces.space.Space] =
None, action_space: Optional[gym.spaces.space.Space]
= None, action_scaling: bool = False, ac-
tion_bound_method: str = '')

Bases: tianshou.policy.base.BasePolicy

A random agent used in multi-agent learning.

It randomly chooses an action from the legal action.

forward(batch: tianshou.data.batch.Batch, state: Optional[Union[dict, tianshou.data.batch.Batch,
numpy.ndarray]] = None, **kwargs: Any)→ tianshou.data.batch.Batch

Compute the random action over the given batch data.

The input should contain a mask in batch.obs, with “True” to be available and “False” to be un-
available. For example, batch.obs.mask == np.array([[False, True, False]])means
with batch size 1, action “1” is available but action “0” and “2” are unavailable.

Returns A Batch with “act” key, containing the random action.

See also:

Please refer to forward() for more detailed explanation.

learn(batch: tianshou.data.batch.Batch, **kwargs: Any)→ Dict[str, float]
Since a random agent learns nothing, it returns an empty dict.

training: bool

1.10.2 Model-free

DQN Family

class tianshou.policy.DQNPolicy(model: torch.nn.modules.module.Module, optim:
torch.optim.optimizer.Optimizer, discount_factor: float =
0.99, estimation_step: int = 1, target_update_freq: int = 0,
reward_normalization: bool = False, is_double: bool = True,
**kwargs: Any)

Bases: tianshou.policy.base.BasePolicy

Implementation of Deep Q Network. arXiv:1312.5602.

Implementation of Double Q-Learning. arXiv:1509.06461.

Implementation of Dueling DQN. arXiv:1511.06581 (the dueling DQN is implemented in the network side, not
here).

Parameters

• model (torch.nn.Module) – a model following the rules in BasePolicy . (s ->
logits)

• optim (torch.optim.Optimizer) – a torch.optim for optimizing the model.

• discount_factor (float) – in [0, 1].

• estimation_step (int) – the number of steps to look ahead. Default to 1.

• target_update_freq (int) – the target network update frequency (0 if you do not use
the target network). Default to 0.

• reward_normalization (bool) – normalize the reward to Normal(0, 1). Default to
False.
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• is_double (bool) – use double dqn. Default to True.

See also:

Please refer to BasePolicy for more detailed explanation.

set_eps(eps: float)→ None
Set the eps for epsilon-greedy exploration.

train(mode: bool = True)→ tianshou.policy.modelfree.dqn.DQNPolicy
Set the module in training mode, except for the target network.

sync_weight()→ None
Synchronize the weight for the target network.

process_fn(batch: tianshou.data.batch.Batch, buffer: tianshou.data.buffer.base.ReplayBuffer, in-
dices: numpy.ndarray)→ tianshou.data.batch.Batch

Compute the n-step return for Q-learning targets.

More details can be found at compute_nstep_return().

compute_q_value(logits: torch.Tensor, mask: Optional[numpy.ndarray])→ torch.Tensor
Compute the q value based on the network’s raw output and action mask.

forward(batch: tianshou.data.batch.Batch, state: Optional[Union[dict, tianshou.data.batch.Batch,
numpy.ndarray]] = None, model: str = 'model', input: str = 'obs', **kwargs: Any) → tian-
shou.data.batch.Batch

Compute action over the given batch data.

If you need to mask the action, please add a “mask” into batch.obs, for example, if we have an environment
that has “0/1/2” three actions:

batch == Batch(
obs=Batch(

obs="original obs, with batch_size=1 for demonstration",
mask=np.array([[False, True, False]]),
# action 1 is available
# action 0 and 2 are unavailable

),
...

)

Parameters eps (float) – in [0, 1], for epsilon-greedy exploration method.

Returns

A Batch which has 3 keys:

• act the action.

• logits the network’s raw output.

• state the hidden state.

See also:

Please refer to forward() for more detailed explanation.

learn(batch: tianshou.data.batch.Batch, **kwargs: Any)→ Dict[str, float]
Update policy with a given batch of data.

Returns A dict, including the data needed to be logged (e.g., loss).
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Note: In order to distinguish the collecting state, updating state and testing state, you can check the policy
state by self.training and self.updating. Please refer to States for policy for more detailed
explanation.

Warning: If you use torch.distributions.Normal and torch.distributions.
Categorical to calculate the log_prob, please be careful about the shape: Categorical distribu-
tion gives “[batch_size]” shape while Normal distribution gives “[batch_size, 1]” shape. The auto-
broadcasting of numerical operation with torch tensors will amplify this error.

exploration_noise(act: Union[numpy.ndarray, tianshou.data.batch.Batch], batch: tian-
shou.data.batch.Batch)→ Union[numpy.ndarray, tianshou.data.batch.Batch]

Modify the action from policy.forward with exploration noise.

Parameters

• act – a data batch or numpy.ndarray which is the action taken by policy.forward.

• batch – the input batch for policy.forward, kept for advanced usage.

Returns action in the same form of input “act” but with added exploration noise.

training: bool

class tianshou.policy.C51Policy(model: torch.nn.modules.module.Module, optim:
torch.optim.optimizer.Optimizer, discount_factor: float =
0.99, num_atoms: int = 51, v_min: float = - 10.0, v_max: float
= 10.0, estimation_step: int = 1, target_update_freq: int = 0,
reward_normalization: bool = False, **kwargs: Any)

Bases: tianshou.policy.modelfree.dqn.DQNPolicy

Implementation of Categorical Deep Q-Network. arXiv:1707.06887.

Parameters

• model (torch.nn.Module) – a model following the rules in BasePolicy . (s ->
logits)

• optim (torch.optim.Optimizer) – a torch.optim for optimizing the model.

• discount_factor (float) – in [0, 1].

• num_atoms (int) – the number of atoms in the support set of the value distribution.
Default to 51.

• v_min (float) – the value of the smallest atom in the support set. Default to -10.0.

• v_max (float) – the value of the largest atom in the support set. Default to 10.0.

• estimation_step (int) – the number of steps to look ahead. Default to 1.

• target_update_freq (int) – the target network update frequency (0 if you do not use
the target network). Default to 0.

• reward_normalization (bool) – normalize the reward to Normal(0, 1). Default to
False.

See also:

Please refer to DQNPolicy for more detailed explanation.
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compute_q_value(logits: torch.Tensor, mask: Optional[numpy.ndarray])→ torch.Tensor
Compute the q value based on the network’s raw output and action mask.

learn(batch: tianshou.data.batch.Batch, **kwargs: Any)→ Dict[str, float]
Update policy with a given batch of data.

Returns A dict, including the data needed to be logged (e.g., loss).

Note: In order to distinguish the collecting state, updating state and testing state, you can check the policy
state by self.training and self.updating. Please refer to States for policy for more detailed
explanation.

Warning: If you use torch.distributions.Normal and torch.distributions.
Categorical to calculate the log_prob, please be careful about the shape: Categorical distribu-
tion gives “[batch_size]” shape while Normal distribution gives “[batch_size, 1]” shape. The auto-
broadcasting of numerical operation with torch tensors will amplify this error.

training: bool

class tianshou.policy.RainbowPolicy(model: torch.nn.modules.module.Module, optim:
torch.optim.optimizer.Optimizer, discount_factor: float
= 0.99, num_atoms: int = 51, v_min: float = - 10.0,
v_max: float = 10.0, estimation_step: int = 1, tar-
get_update_freq: int = 0, reward_normalization: bool =
False, **kwargs: Any)

Bases: tianshou.policy.modelfree.c51.C51Policy

Implementation of Rainbow DQN. arXiv:1710.02298.

Parameters

• model (torch.nn.Module) – a model following the rules in BasePolicy . (s ->
logits)

• optim (torch.optim.Optimizer) – a torch.optim for optimizing the model.

• discount_factor (float) – in [0, 1].

• num_atoms (int) – the number of atoms in the support set of the value distribution.
Default to 51.

• v_min (float) – the value of the smallest atom in the support set. Default to -10.0.

• v_max (float) – the value of the largest atom in the support set. Default to 10.0.

• estimation_step (int) – the number of steps to look ahead. Default to 1.

• target_update_freq (int) – the target network update frequency (0 if you do not use
the target network). Default to 0.

• reward_normalization (bool) – normalize the reward to Normal(0, 1). Default to
False.

See also:

Please refer to C51Policy for more detailed explanation.

learn(batch: tianshou.data.batch.Batch, **kwargs: Any)→ Dict[str, float]
Update policy with a given batch of data.
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Returns A dict, including the data needed to be logged (e.g., loss).

Note: In order to distinguish the collecting state, updating state and testing state, you can check the policy
state by self.training and self.updating. Please refer to States for policy for more detailed
explanation.

Warning: If you use torch.distributions.Normal and torch.distributions.
Categorical to calculate the log_prob, please be careful about the shape: Categorical distribu-
tion gives “[batch_size]” shape while Normal distribution gives “[batch_size, 1]” shape. The auto-
broadcasting of numerical operation with torch tensors will amplify this error.

training: bool

class tianshou.policy.QRDQNPolicy(model: torch.nn.modules.module.Module, optim:
torch.optim.optimizer.Optimizer, discount_factor: float
= 0.99, num_quantiles: int = 200, estimation_step: int = 1,
target_update_freq: int = 0, reward_normalization: bool =
False, **kwargs: Any)

Bases: tianshou.policy.modelfree.dqn.DQNPolicy

Implementation of Quantile Regression Deep Q-Network. arXiv:1710.10044.

Parameters

• model (torch.nn.Module) – a model following the rules in BasePolicy . (s ->
logits)

• optim (torch.optim.Optimizer) – a torch.optim for optimizing the model.

• discount_factor (float) – in [0, 1].

• num_quantiles (int) – the number of quantile midpoints in the inverse cumulative
distribution function of the value. Default to 200.

• estimation_step (int) – the number of steps to look ahead. Default to 1.

• target_update_freq (int) – the target network update frequency (0 if you do not use
the target network).

• reward_normalization (bool) – normalize the reward to Normal(0, 1). Default to
False.

See also:

Please refer to DQNPolicy for more detailed explanation.

compute_q_value(logits: torch.Tensor, mask: Optional[numpy.ndarray])→ torch.Tensor
Compute the q value based on the network’s raw output and action mask.

learn(batch: tianshou.data.batch.Batch, **kwargs: Any)→ Dict[str, float]
Update policy with a given batch of data.

Returns A dict, including the data needed to be logged (e.g., loss).

Note: In order to distinguish the collecting state, updating state and testing state, you can check the policy
state by self.training and self.updating. Please refer to States for policy for more detailed
explanation.

72 Chapter 1. Installation



Tianshou, Release 0.4.4

Warning: If you use torch.distributions.Normal and torch.distributions.
Categorical to calculate the log_prob, please be careful about the shape: Categorical distribu-
tion gives “[batch_size]” shape while Normal distribution gives “[batch_size, 1]” shape. The auto-
broadcasting of numerical operation with torch tensors will amplify this error.

training: bool

class tianshou.policy.IQNPolicy(model: torch.nn.modules.module.Module, optim:
torch.optim.optimizer.Optimizer, discount_factor: float =
0.99, sample_size: int = 32, online_sample_size: int = 8,
target_sample_size: int = 8, estimation_step: int = 1, tar-
get_update_freq: int = 0, reward_normalization: bool = False,
**kwargs: Any)

Bases: tianshou.policy.modelfree.qrdqn.QRDQNPolicy

Implementation of Implicit Quantile Network. arXiv:1806.06923.

Parameters

• model (torch.nn.Module) – a model following the rules in BasePolicy . (s ->
logits)

• optim (torch.optim.Optimizer) – a torch.optim for optimizing the model.

• discount_factor (float) – in [0, 1].

• sample_size (int) – the number of samples for policy evaluation. Default to 32.

• online_sample_size (int) – the number of samples for online model in training.
Default to 8.

• target_sample_size (int) – the number of samples for target model in training.
Default to 8.

• estimation_step (int) – the number of steps to look ahead. Default to 1.

• target_update_freq (int) – the target network update frequency (0 if you do not use
the target network).

• reward_normalization (bool) – normalize the reward to Normal(0, 1). Default to
False.

See also:

Please refer to QRDQNPolicy for more detailed explanation.

forward(batch: tianshou.data.batch.Batch, state: Optional[Union[dict, tianshou.data.batch.Batch,
numpy.ndarray]] = None, model: str = 'model', input: str = 'obs', **kwargs: Any) → tian-
shou.data.batch.Batch

Compute action over the given batch data.

If you need to mask the action, please add a “mask” into batch.obs, for example, if we have an environment
that has “0/1/2” three actions:

batch == Batch(
obs=Batch(

obs="original obs, with batch_size=1 for demonstration",
mask=np.array([[False, True, False]]),
# action 1 is available
# action 0 and 2 are unavailable

),

(continues on next page)
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(continued from previous page)

...
)

Parameters eps (float) – in [0, 1], for epsilon-greedy exploration method.

Returns

A Batch which has 3 keys:

• act the action.

• logits the network’s raw output.

• state the hidden state.

See also:

Please refer to forward() for more detailed explanation.

learn(batch: tianshou.data.batch.Batch, **kwargs: Any)→ Dict[str, float]
Update policy with a given batch of data.

Returns A dict, including the data needed to be logged (e.g., loss).

Note: In order to distinguish the collecting state, updating state and testing state, you can check the policy
state by self.training and self.updating. Please refer to States for policy for more detailed
explanation.

Warning: If you use torch.distributions.Normal and torch.distributions.
Categorical to calculate the log_prob, please be careful about the shape: Categorical distribu-
tion gives “[batch_size]” shape while Normal distribution gives “[batch_size, 1]” shape. The auto-
broadcasting of numerical operation with torch tensors will amplify this error.

training: bool

class tianshou.policy.FQFPolicy(model: tianshou.utils.net.discrete.FullQuantileFunction,
optim: torch.optim.optimizer.Optimizer, fraction_model:
tianshou.utils.net.discrete.FractionProposalNetwork, frac-
tion_optim: torch.optim.optimizer.Optimizer, discount_factor:
float = 0.99, num_fractions: int = 32, ent_coef: float =
0.0, estimation_step: int = 1, target_update_freq: int = 0,
reward_normalization: bool = False, **kwargs: Any)

Bases: tianshou.policy.modelfree.qrdqn.QRDQNPolicy

Implementation of Fully-parameterized Quantile Function. arXiv:1911.02140.

Parameters

• model (torch.nn.Module) – a model following the rules in BasePolicy . (s ->
logits)

• optim (torch.optim.Optimizer) – a torch.optim for optimizing the model.

• fraction_model (FractionProposalNetwork) – a FractionProposalNetwork for
proposing fractions/quantiles given state.
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• fraction_optim (torch.optim.Optimizer) – a torch.optim for optimizing the
fraction model above.

• discount_factor (float) – in [0, 1].

• num_fractions (int) – the number of fractions to use. Default to 32.

• ent_coef (float) – the coefficient for entropy loss. Default to 0.

• estimation_step (int) – the number of steps to look ahead. Default to 1.

• target_update_freq (int) – the target network update frequency (0 if you do not use
the target network).

• reward_normalization (bool) – normalize the reward to Normal(0, 1). Default to
False.

See also:

Please refer to QRDQNPolicy for more detailed explanation.

forward(batch: tianshou.data.batch.Batch, state: Optional[Union[dict, tianshou.data.batch.Batch,
numpy.ndarray]] = None, model: str = 'model', input: str = 'obs', fractions: Op-
tional[tianshou.data.batch.Batch] = None, **kwargs: Any)→ tianshou.data.batch.Batch

Compute action over the given batch data.

If you need to mask the action, please add a “mask” into batch.obs, for example, if we have an environment
that has “0/1/2” three actions:

batch == Batch(
obs=Batch(

obs="original obs, with batch_size=1 for demonstration",
mask=np.array([[False, True, False]]),
# action 1 is available
# action 0 and 2 are unavailable

),
...

)

Parameters eps (float) – in [0, 1], for epsilon-greedy exploration method.

Returns

A Batch which has 3 keys:

• act the action.

• logits the network’s raw output.

• state the hidden state.

See also:

Please refer to forward() for more detailed explanation.

learn(batch: tianshou.data.batch.Batch, **kwargs: Any)→ Dict[str, float]
Update policy with a given batch of data.

Returns A dict, including the data needed to be logged (e.g., loss).

Note: In order to distinguish the collecting state, updating state and testing state, you can check the policy
state by self.training and self.updating. Please refer to States for policy for more detailed
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explanation.

Warning: If you use torch.distributions.Normal and torch.distributions.
Categorical to calculate the log_prob, please be careful about the shape: Categorical distribu-
tion gives “[batch_size]” shape while Normal distribution gives “[batch_size, 1]” shape. The auto-
broadcasting of numerical operation with torch tensors will amplify this error.

training: bool

On-policy

class tianshou.policy.PGPolicy(model: torch.nn.modules.module.Module, op-
tim: torch.optim.optimizer.Optimizer, dist_fn:
Type[torch.distributions.distribution.Distribution], dis-
count_factor: float = 0.99, reward_normalization: bool = False,
action_scaling: bool = True, action_bound_method: str = 'clip',
lr_scheduler: Optional[torch.optim.lr_scheduler.LambdaLR] =
None, deterministic_eval: bool = False, **kwargs: Any)

Bases: tianshou.policy.base.BasePolicy

Implementation of REINFORCE algorithm.

Parameters

• model (torch.nn.Module) – a model following the rules in BasePolicy . (s ->
logits)

• optim (torch.optim.Optimizer) – a torch.optim for optimizing the model.

• dist_fn (Type[torch.distributions.Distribution]) – distribution class
for computing the action.

• discount_factor (float) – in [0, 1]. Default to 0.99.

• action_scaling (bool) – whether to map actions from range [-1, 1] to range [ac-
tion_spaces.low, action_spaces.high]. Default to True.

• action_bound_method (str) – method to bound action to range [-1, 1], can be either
“clip” (for simply clipping the action), “tanh” (for applying tanh squashing) for now, or
empty string for no bounding. Default to “clip”.

• action_space (Optional[gym.Space]) – env’s action space, mandatory if you
want to use option “action_scaling” or “action_bound_method”. Default to None.

• lr_scheduler – a learning rate scheduler that adjusts the learning rate in optimizer in
each policy.update(). Default to None (no lr_scheduler).

• deterministic_eval (bool) – whether to use deterministic action instead of stochas-
tic action sampled by the policy. Default to False.

See also:

Please refer to BasePolicy for more detailed explanation.

process_fn(batch: tianshou.data.batch.Batch, buffer: tianshou.data.buffer.base.ReplayBuffer, in-
dices: numpy.ndarray)→ tianshou.data.batch.Batch
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Compute the discounted returns for each transition.

𝐺𝑡 =

𝑇∑︁
𝑖=𝑡

𝛾𝑖−𝑡𝑟𝑖

where 𝑇 is the terminal time step, 𝛾 is the discount factor, 𝛾 ∈ [0, 1].

forward(batch: tianshou.data.batch.Batch, state: Optional[Union[dict, tianshou.data.batch.Batch,
numpy.ndarray]] = None, **kwargs: Any)→ tianshou.data.batch.Batch

Compute action over the given batch data.

Returns

A Batch which has 4 keys:

• act the action.

• logits the network’s raw output.

• dist the action distribution.

• state the hidden state.

See also:

Please refer to forward() for more detailed explanation.

learn(batch: tianshou.data.batch.Batch, batch_size: int, repeat: int, **kwargs: Any) → Dict[str,
List[float]]

Update policy with a given batch of data.

Returns A dict, including the data needed to be logged (e.g., loss).

Note: In order to distinguish the collecting state, updating state and testing state, you can check the policy
state by self.training and self.updating. Please refer to States for policy for more detailed
explanation.

Warning: If you use torch.distributions.Normal and torch.distributions.
Categorical to calculate the log_prob, please be careful about the shape: Categorical distribu-
tion gives “[batch_size]” shape while Normal distribution gives “[batch_size, 1]” shape. The auto-
broadcasting of numerical operation with torch tensors will amplify this error.

training: bool

class tianshou.policy.NPGPolicy(actor: torch.nn.modules.module.Module,
critic: torch.nn.modules.module.Module, op-
tim: torch.optim.optimizer.Optimizer, dist_fn:
Type[torch.distributions.distribution.Distribution], advan-
tage_normalization: bool = True, optim_critic_iters: int = 5,
actor_step_size: float = 0.5, **kwargs: Any)

Bases: tianshou.policy.modelfree.a2c.A2CPolicy

Implementation of Natural Policy Gradient.

https://proceedings.neurips.cc/paper/2001/file/4b86abe48d358ecf194c56c69108433e-Paper.pdf

Parameters

• actor (torch.nn.Module) – the actor network following the rules in BasePolicy .
(s -> logits)
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• critic (torch.nn.Module) – the critic network. (s -> V(s))

• optim (torch.optim.Optimizer) – the optimizer for actor and critic network.

• dist_fn (Type[torch.distributions.Distribution]) – distribution class
for computing the action.

• advantage_normalization (bool) – whether to do per mini-batch advantage nor-
malization. Default to True.

• optim_critic_iters (int) – Number of times to optimize critic network per update.
Default to 5.

• gae_lambda (float) – in [0, 1], param for Generalized Advantage Estimation. Default
to 0.95.

• reward_normalization (bool) – normalize estimated values to have std close to 1.
Default to False.

• max_batchsize (int) – the maximum size of the batch when computing GAE, depends
on the size of available memory and the memory cost of the model; should be as large as
possible within the memory constraint. Default to 256.

• action_scaling (bool) – whether to map actions from range [-1, 1] to range [ac-
tion_spaces.low, action_spaces.high]. Default to True.

• action_bound_method (str) – method to bound action to range [-1, 1], can be either
“clip” (for simply clipping the action), “tanh” (for applying tanh squashing) for now, or
empty string for no bounding. Default to “clip”.

• action_space (Optional[gym.Space]) – env’s action space, mandatory if you
want to use option “action_scaling” or “action_bound_method”. Default to None.

• lr_scheduler – a learning rate scheduler that adjusts the learning rate in optimizer in
each policy.update(). Default to None (no lr_scheduler).

• deterministic_eval (bool) – whether to use deterministic action instead of stochas-
tic action sampled by the policy. Default to False.

process_fn(batch: tianshou.data.batch.Batch, buffer: tianshou.data.buffer.base.ReplayBuffer, in-
dices: numpy.ndarray)→ tianshou.data.batch.Batch

Compute the discounted returns for each transition.

𝐺𝑡 =
𝑇∑︁
𝑖=𝑡

𝛾𝑖−𝑡𝑟𝑖

where 𝑇 is the terminal time step, 𝛾 is the discount factor, 𝛾 ∈ [0, 1].

learn(batch: tianshou.data.batch.Batch, batch_size: int, repeat: int, **kwargs: Any) → Dict[str,
List[float]]

Update policy with a given batch of data.

Returns A dict, including the data needed to be logged (e.g., loss).

Note: In order to distinguish the collecting state, updating state and testing state, you can check the policy
state by self.training and self.updating. Please refer to States for policy for more detailed
explanation.
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Warning: If you use torch.distributions.Normal and torch.distributions.
Categorical to calculate the log_prob, please be careful about the shape: Categorical distribu-
tion gives “[batch_size]” shape while Normal distribution gives “[batch_size, 1]” shape. The auto-
broadcasting of numerical operation with torch tensors will amplify this error.

training: bool

class tianshou.policy.A2CPolicy(actor: torch.nn.modules.module.Module,
critic: torch.nn.modules.module.Module, op-
tim: torch.optim.optimizer.Optimizer, dist_fn:
Type[torch.distributions.distribution.Distribution], vf_coef:
float = 0.5, ent_coef: float = 0.01, max_grad_norm:
Optional[float] = None, gae_lambda: float = 0.95,
max_batchsize: int = 256, **kwargs: Any)

Bases: tianshou.policy.modelfree.pg.PGPolicy

Implementation of Synchronous Advantage Actor-Critic. arXiv:1602.01783.

Parameters

• actor (torch.nn.Module) – the actor network following the rules in BasePolicy .
(s -> logits)

• critic (torch.nn.Module) – the critic network. (s -> V(s))

• optim (torch.optim.Optimizer) – the optimizer for actor and critic network.

• dist_fn (Type[torch.distributions.Distribution]) – distribution class
for computing the action.

• discount_factor (float) – in [0, 1]. Default to 0.99.

• vf_coef (float) – weight for value loss. Default to 0.5.

• ent_coef (float) – weight for entropy loss. Default to 0.01.

• max_grad_norm (float) – clipping gradients in back propagation. Default to None.

• gae_lambda (float) – in [0, 1], param for Generalized Advantage Estimation. Default
to 0.95.

• reward_normalization (bool) – normalize estimated values to have std close to 1.
Default to False.

• max_batchsize (int) – the maximum size of the batch when computing GAE, depends
on the size of available memory and the memory cost of the model; should be as large as
possible within the memory constraint. Default to 256.

• action_scaling (bool) – whether to map actions from range [-1, 1] to range [ac-
tion_spaces.low, action_spaces.high]. Default to True.

• action_bound_method (str) – method to bound action to range [-1, 1], can be either
“clip” (for simply clipping the action), “tanh” (for applying tanh squashing) for now, or
empty string for no bounding. Default to “clip”.

• action_space (Optional[gym.Space]) – env’s action space, mandatory if you
want to use option “action_scaling” or “action_bound_method”. Default to None.

• lr_scheduler – a learning rate scheduler that adjusts the learning rate in optimizer in
each policy.update(). Default to None (no lr_scheduler).
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• deterministic_eval (bool) – whether to use deterministic action instead of stochas-
tic action sampled by the policy. Default to False.

See also:

Please refer to BasePolicy for more detailed explanation.

process_fn(batch: tianshou.data.batch.Batch, buffer: tianshou.data.buffer.base.ReplayBuffer, in-
dices: numpy.ndarray)→ tianshou.data.batch.Batch

Compute the discounted returns for each transition.

𝐺𝑡 =

𝑇∑︁
𝑖=𝑡

𝛾𝑖−𝑡𝑟𝑖

where 𝑇 is the terminal time step, 𝛾 is the discount factor, 𝛾 ∈ [0, 1].

learn(batch: tianshou.data.batch.Batch, batch_size: int, repeat: int, **kwargs: Any) → Dict[str,
List[float]]

Update policy with a given batch of data.

Returns A dict, including the data needed to be logged (e.g., loss).

Note: In order to distinguish the collecting state, updating state and testing state, you can check the policy
state by self.training and self.updating. Please refer to States for policy for more detailed
explanation.

Warning: If you use torch.distributions.Normal and torch.distributions.
Categorical to calculate the log_prob, please be careful about the shape: Categorical distribu-
tion gives “[batch_size]” shape while Normal distribution gives “[batch_size, 1]” shape. The auto-
broadcasting of numerical operation with torch tensors will amplify this error.

training: bool

class tianshou.policy.TRPOPolicy(actor: torch.nn.modules.module.Module,
critic: torch.nn.modules.module.Module, op-
tim: torch.optim.optimizer.Optimizer, dist_fn:
Type[torch.distributions.distribution.Distribution], max_kl:
float = 0.01, backtrack_coeff: float = 0.8, max_backtracks:
int = 10, **kwargs: Any)

Bases: tianshou.policy.modelfree.npg.NPGPolicy

Implementation of Trust Region Policy Optimization. arXiv:1502.05477.

Parameters

• actor (torch.nn.Module) – the actor network following the rules in BasePolicy .
(s -> logits)

• critic (torch.nn.Module) – the critic network. (s -> V(s))

• optim (torch.optim.Optimizer) – the optimizer for actor and critic network.

• dist_fn (Type[torch.distributions.Distribution]) – distribution class
for computing the action.

• advantage_normalization (bool) – whether to do per mini-batch advantage nor-
malization. Default to True.
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• optim_critic_iters (int) – Number of times to optimize critic network per update.
Default to 5.

• max_kl (int) – max kl-divergence used to constrain each actor network update. Default
to 0.01.

• backtrack_coeff (float) – Coefficient to be multiplied by step size when constraints
are not met. Default to 0.8.

• max_backtracks (int) – Max number of backtracking times in linesearch. Default to
10.

• gae_lambda (float) – in [0, 1], param for Generalized Advantage Estimation. Default
to 0.95.

• reward_normalization (bool) – normalize estimated values to have std close to 1.
Default to False.

• max_batchsize (int) – the maximum size of the batch when computing GAE, depends
on the size of available memory and the memory cost of the model; should be as large as
possible within the memory constraint. Default to 256.

• action_scaling (bool) – whether to map actions from range [-1, 1] to range [ac-
tion_spaces.low, action_spaces.high]. Default to True.

• action_bound_method (str) – method to bound action to range [-1, 1], can be either
“clip” (for simply clipping the action), “tanh” (for applying tanh squashing) for now, or
empty string for no bounding. Default to “clip”.

• action_space (Optional[gym.Space]) – env’s action space, mandatory if you
want to use option “action_scaling” or “action_bound_method”. Default to None.

• lr_scheduler – a learning rate scheduler that adjusts the learning rate in optimizer in
each policy.update(). Default to None (no lr_scheduler).

• deterministic_eval (bool) – whether to use deterministic action instead of stochas-
tic action sampled by the policy. Default to False.

learn(batch: tianshou.data.batch.Batch, batch_size: int, repeat: int, **kwargs: Any) → Dict[str,
List[float]]

Update policy with a given batch of data.

Returns A dict, including the data needed to be logged (e.g., loss).

Note: In order to distinguish the collecting state, updating state and testing state, you can check the policy
state by self.training and self.updating. Please refer to States for policy for more detailed
explanation.

Warning: If you use torch.distributions.Normal and torch.distributions.
Categorical to calculate the log_prob, please be careful about the shape: Categorical distribu-
tion gives “[batch_size]” shape while Normal distribution gives “[batch_size, 1]” shape. The auto-
broadcasting of numerical operation with torch tensors will amplify this error.

training: bool
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class tianshou.policy.PPOPolicy(actor: torch.nn.modules.module.Module,
critic: torch.nn.modules.module.Module, op-
tim: torch.optim.optimizer.Optimizer, dist_fn:
Type[torch.distributions.distribution.Distribution], eps_clip:
float = 0.2, dual_clip: Optional[float] = None, value_clip:
bool = False, advantage_normalization: bool = True,
recompute_advantage: bool = False, **kwargs: Any)

Bases: tianshou.policy.modelfree.a2c.A2CPolicy

Implementation of Proximal Policy Optimization. arXiv:1707.06347.

Parameters

• actor (torch.nn.Module) – the actor network following the rules in BasePolicy .
(s -> logits)

• critic (torch.nn.Module) – the critic network. (s -> V(s))

• optim (torch.optim.Optimizer) – the optimizer for actor and critic network.

• dist_fn (Type[torch.distributions.Distribution]) – distribution class
for computing the action.

• discount_factor (float) – in [0, 1]. Default to 0.99.

• eps_clip (float) – 𝜖 in 𝐿𝐶𝐿𝐼𝑃 in the original paper. Default to 0.2.

• dual_clip (float) – a parameter c mentioned in arXiv:1912.09729 Equ. 5, where c >
1 is a constant indicating the lower bound. Default to 5.0 (set None if you do not want to
use it).

• value_clip (bool) – a parameter mentioned in arXiv:1811.02553v3 Sec. 4.1. Default
to True.

• advantage_normalization (bool) – whether to do per mini-batch advantage nor-
malization. Default to True.

• recompute_advantage (bool) – whether to recompute advantage every update repeat
according to https://arxiv.org/pdf/2006.05990.pdf Sec. 3.5. Default to False.

• vf_coef (float) – weight for value loss. Default to 0.5.

• ent_coef (float) – weight for entropy loss. Default to 0.01.

• max_grad_norm (float) – clipping gradients in back propagation. Default to None.

• gae_lambda (float) – in [0, 1], param for Generalized Advantage Estimation. Default
to 0.95.

• reward_normalization (bool) – normalize estimated values to have std close to 1,
also normalize the advantage to Normal(0, 1). Default to False.

• max_batchsize (int) – the maximum size of the batch when computing GAE, depends
on the size of available memory and the memory cost of the model; should be as large as
possible within the memory constraint. Default to 256.

• action_scaling (bool) – whether to map actions from range [-1, 1] to range [ac-
tion_spaces.low, action_spaces.high]. Default to True.

• action_bound_method (str) – method to bound action to range [-1, 1], can be either
“clip” (for simply clipping the action), “tanh” (for applying tanh squashing) for now, or
empty string for no bounding. Default to “clip”.

• action_space (Optional[gym.Space]) – env’s action space, mandatory if you
want to use option “action_scaling” or “action_bound_method”. Default to None.
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• lr_scheduler – a learning rate scheduler that adjusts the learning rate in optimizer in
each policy.update(). Default to None (no lr_scheduler).

• deterministic_eval (bool) – whether to use deterministic action instead of stochas-
tic action sampled by the policy. Default to False.

See also:

Please refer to BasePolicy for more detailed explanation.

process_fn(batch: tianshou.data.batch.Batch, buffer: tianshou.data.buffer.base.ReplayBuffer, in-
dices: numpy.ndarray)→ tianshou.data.batch.Batch

Compute the discounted returns for each transition.

𝐺𝑡 =

𝑇∑︁
𝑖=𝑡

𝛾𝑖−𝑡𝑟𝑖

where 𝑇 is the terminal time step, 𝛾 is the discount factor, 𝛾 ∈ [0, 1].

learn(batch: tianshou.data.batch.Batch, batch_size: int, repeat: int, **kwargs: Any) → Dict[str,
List[float]]

Update policy with a given batch of data.

Returns A dict, including the data needed to be logged (e.g., loss).

Note: In order to distinguish the collecting state, updating state and testing state, you can check the policy
state by self.training and self.updating. Please refer to States for policy for more detailed
explanation.

Warning: If you use torch.distributions.Normal and torch.distributions.
Categorical to calculate the log_prob, please be careful about the shape: Categorical distribu-
tion gives “[batch_size]” shape while Normal distribution gives “[batch_size, 1]” shape. The auto-
broadcasting of numerical operation with torch tensors will amplify this error.

training: bool

Off-policy

class tianshou.policy.DDPGPolicy(actor: Optional[torch.nn.modules.module.Module], ac-
tor_optim: Optional[torch.optim.optimizer.Optimizer], critic:
Optional[torch.nn.modules.module.Module], critic_optim:
Optional[torch.optim.optimizer.Optimizer], tau: float =
0.005, gamma: float = 0.99, exploration_noise: Op-
tional[tianshou.exploration.random.BaseNoise] = <tian-
shou.exploration.random.GaussianNoise object>, re-
ward_normalization: bool = False, estimation_step: int = 1,
action_scaling: bool = True, action_bound_method: str =
'clip', **kwargs: Any)

Bases: tianshou.policy.base.BasePolicy

Implementation of Deep Deterministic Policy Gradient. arXiv:1509.02971.

Parameters

• actor (torch.nn.Module) – the actor network following the rules in BasePolicy .
(s -> logits)
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• actor_optim (torch.optim.Optimizer) – the optimizer for actor network.

• critic (torch.nn.Module) – the critic network. (s, a -> Q(s, a))

• critic_optim (torch.optim.Optimizer) – the optimizer for critic network.

• tau (float) – param for soft update of the target network. Default to 0.005.

• gamma (float) – discount factor, in [0, 1]. Default to 0.99.

• exploration_noise (BaseNoise) – the exploration noise, add to the action. Default
to GaussianNoise(sigma=0.1).

• reward_normalization (bool) – normalize the reward to Normal(0, 1), Default to
False.

• estimation_step (int) – the number of steps to look ahead. Default to 1.

• action_scaling (bool) – whether to map actions from range [-1, 1] to range [ac-
tion_spaces.low, action_spaces.high]. Default to True.

• action_bound_method (str) – method to bound action to range [-1, 1], can be either
“clip” (for simply clipping the action) or empty string for no bounding. Default to “clip”.

• action_space (Optional[gym.Space]) – env’s action space, mandatory if you
want to use option “action_scaling” or “action_bound_method”. Default to None.

See also:

Please refer to BasePolicy for more detailed explanation.

set_exp_noise(noise: Optional[tianshou.exploration.random.BaseNoise])→ None
Set the exploration noise.

train(mode: bool = True)→ tianshou.policy.modelfree.ddpg.DDPGPolicy
Set the module in training mode, except for the target network.

sync_weight()→ None
Soft-update the weight for the target network.

process_fn(batch: tianshou.data.batch.Batch, buffer: tianshou.data.buffer.base.ReplayBuffer, in-
dices: numpy.ndarray)→ tianshou.data.batch.Batch

Pre-process the data from the provided replay buffer.

Used in update(). Check out policy.process_fn for more information.

forward(batch: tianshou.data.batch.Batch, state: Optional[Union[dict, tianshou.data.batch.Batch,
numpy.ndarray]] = None, model: str = 'actor', input: str = 'obs', **kwargs: Any) → tian-
shou.data.batch.Batch

Compute action over the given batch data.

Returns

A Batch which has 2 keys:

• act the action.

• state the hidden state.

See also:

Please refer to forward() for more detailed explanation.

learn(batch: tianshou.data.batch.Batch, **kwargs: Any)→ Dict[str, float]
Update policy with a given batch of data.

Returns A dict, including the data needed to be logged (e.g., loss).

84 Chapter 1. Installation



Tianshou, Release 0.4.4

Note: In order to distinguish the collecting state, updating state and testing state, you can check the policy
state by self.training and self.updating. Please refer to States for policy for more detailed
explanation.

Warning: If you use torch.distributions.Normal and torch.distributions.
Categorical to calculate the log_prob, please be careful about the shape: Categorical distribu-
tion gives “[batch_size]” shape while Normal distribution gives “[batch_size, 1]” shape. The auto-
broadcasting of numerical operation with torch tensors will amplify this error.

exploration_noise(act: Union[numpy.ndarray, tianshou.data.batch.Batch], batch: tian-
shou.data.batch.Batch)→ Union[numpy.ndarray, tianshou.data.batch.Batch]

Modify the action from policy.forward with exploration noise.

Parameters

• act – a data batch or numpy.ndarray which is the action taken by policy.forward.

• batch – the input batch for policy.forward, kept for advanced usage.

Returns action in the same form of input “act” but with added exploration noise.

training: bool

class tianshou.policy.TD3Policy(actor: torch.nn.modules.module.Module, ac-
tor_optim: torch.optim.optimizer.Optimizer,
critic1: torch.nn.modules.module.Module,
critic1_optim: torch.optim.optimizer.Optimizer, critic2:
torch.nn.modules.module.Module, critic2_optim:
torch.optim.optimizer.Optimizer, tau: float = 0.005,
gamma: float = 0.99, exploration_noise: Op-
tional[tianshou.exploration.random.BaseNoise] = <tian-
shou.exploration.random.GaussianNoise object>, pol-
icy_noise: float = 0.2, update_actor_freq: int = 2, noise_clip:
float = 0.5, reward_normalization: bool = False, estima-
tion_step: int = 1, **kwargs: Any)

Bases: tianshou.policy.modelfree.ddpg.DDPGPolicy

Implementation of TD3, arXiv:1802.09477.

Parameters

• actor (torch.nn.Module) – the actor network following the rules in BasePolicy .
(s -> logits)

• actor_optim (torch.optim.Optimizer) – the optimizer for actor network.

• critic1 (torch.nn.Module) – the first critic network. (s, a -> Q(s, a))

• critic1_optim (torch.optim.Optimizer) – the optimizer for the first critic net-
work.

• critic2 (torch.nn.Module) – the second critic network. (s, a -> Q(s, a))

• critic2_optim (torch.optim.Optimizer) – the optimizer for the second critic
network.

• tau (float) – param for soft update of the target network. Default to 0.005.

• gamma (float) – discount factor, in [0, 1]. Default to 0.99.
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• exploration_noise (float) – the exploration noise, add to the action. Default to
GaussianNoise(sigma=0.1)

• policy_noise (float) – the noise used in updating policy network. Default to 0.2.

• update_actor_freq (int) – the update frequency of actor network. Default to 2.

• noise_clip (float) – the clipping range used in updating policy network. Default to
0.5.

• reward_normalization (bool) – normalize the reward to Normal(0, 1). Default to
False.

• action_scaling (bool) – whether to map actions from range [-1, 1] to range [ac-
tion_spaces.low, action_spaces.high]. Default to True.

• action_bound_method (str) – method to bound action to range [-1, 1], can be either
“clip” (for simply clipping the action) or empty string for no bounding. Default to “clip”.

• action_space (Optional[gym.Space]) – env’s action space, mandatory if you
want to use option “action_scaling” or “action_bound_method”. Default to None.

See also:

Please refer to BasePolicy for more detailed explanation.

train(mode: bool = True)→ tianshou.policy.modelfree.td3.TD3Policy
Set the module in training mode, except for the target network.

sync_weight()→ None
Soft-update the weight for the target network.

learn(batch: tianshou.data.batch.Batch, **kwargs: Any)→ Dict[str, float]
Update policy with a given batch of data.

Returns A dict, including the data needed to be logged (e.g., loss).

Note: In order to distinguish the collecting state, updating state and testing state, you can check the policy
state by self.training and self.updating. Please refer to States for policy for more detailed
explanation.

Warning: If you use torch.distributions.Normal and torch.distributions.
Categorical to calculate the log_prob, please be careful about the shape: Categorical distribu-
tion gives “[batch_size]” shape while Normal distribution gives “[batch_size, 1]” shape. The auto-
broadcasting of numerical operation with torch tensors will amplify this error.

training: bool

actor: torch.nn.modules.module.Module

actor_optim: torch.optim.optimizer.Optimizer

critic: torch.nn.modules.module.Module

critic_optim: torch.optim.optimizer.Optimizer
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class tianshou.policy.SACPolicy(actor: torch.nn.modules.module.Module, ac-
tor_optim: torch.optim.optimizer.Optimizer,
critic1: torch.nn.modules.module.Module,
critic1_optim: torch.optim.optimizer.Optimizer, critic2:
torch.nn.modules.module.Module, critic2_optim:
torch.optim.optimizer.Optimizer, tau: float = 0.005,
gamma: float = 0.99, alpha: Union[float, Tu-
ple[float, torch.Tensor, torch.optim.optimizer.Optimizer]]
= 0.2, reward_normalization: bool = False, es-
timation_step: int = 1, exploration_noise: Op-
tional[tianshou.exploration.random.BaseNoise] = None,
deterministic_eval: bool = True, **kwargs: Any)

Bases: tianshou.policy.modelfree.ddpg.DDPGPolicy

Implementation of Soft Actor-Critic. arXiv:1812.05905.

Parameters

• actor (torch.nn.Module) – the actor network following the rules in BasePolicy .
(s -> logits)

• actor_optim (torch.optim.Optimizer) – the optimizer for actor network.

• critic1 (torch.nn.Module) – the first critic network. (s, a -> Q(s, a))

• critic1_optim (torch.optim.Optimizer) – the optimizer for the first critic net-
work.

• critic2 (torch.nn.Module) – the second critic network. (s, a -> Q(s, a))

• critic2_optim (torch.optim.Optimizer) – the optimizer for the second critic
network.

• tau (float) – param for soft update of the target network. Default to 0.005.

• gamma (float) – discount factor, in [0, 1]. Default to 0.99.

• torch.Tensor, torch.optim.Optimizer) or float alpha ((float,) –
entropy regularization coefficient. Default to 0.2. If a tuple (target_entropy, log_alpha,
alpha_optim) is provided, then alpha is automatically tuned.

• reward_normalization (bool) – normalize the reward to Normal(0, 1). Default to
False.

• exploration_noise (BaseNoise) – add a noise to action for exploration. Default to
None. This is useful when solving hard-exploration problem.

• deterministic_eval (bool) – whether to use deterministic action (mean of Gaussian
policy) instead of stochastic action sampled by the policy. Default to True.

• action_scaling (bool) – whether to map actions from range [-1, 1] to range [ac-
tion_spaces.low, action_spaces.high]. Default to True.

• action_bound_method (str) – method to bound action to range [-1, 1], can be either
“clip” (for simply clipping the action) or empty string for no bounding. Default to “clip”.

• action_space (Optional[gym.Space]) – env’s action space, mandatory if you
want to use option “action_scaling” or “action_bound_method”. Default to None.

See also:

Please refer to BasePolicy for more detailed explanation.

actor: torch.nn.modules.module.Module
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actor_optim: torch.optim.optimizer.Optimizer

train(mode: bool = True)→ tianshou.policy.modelfree.sac.SACPolicy
Set the module in training mode, except for the target network.

sync_weight()→ None
Soft-update the weight for the target network.

forward(batch: tianshou.data.batch.Batch, state: Optional[Union[dict, tianshou.data.batch.Batch,
numpy.ndarray]] = None, input: str = 'obs', **kwargs: Any)→ tianshou.data.batch.Batch

Compute action over the given batch data.

Returns

A Batch which has 2 keys:

• act the action.

• state the hidden state.

See also:

Please refer to forward() for more detailed explanation.

training: bool

critic: torch.nn.modules.module.Module

critic_optim: torch.optim.optimizer.Optimizer

learn(batch: tianshou.data.batch.Batch, **kwargs: Any)→ Dict[str, float]
Update policy with a given batch of data.

Returns A dict, including the data needed to be logged (e.g., loss).

Note: In order to distinguish the collecting state, updating state and testing state, you can check the policy
state by self.training and self.updating. Please refer to States for policy for more detailed
explanation.

Warning: If you use torch.distributions.Normal and torch.distributions.
Categorical to calculate the log_prob, please be careful about the shape: Categorical distribu-
tion gives “[batch_size]” shape while Normal distribution gives “[batch_size, 1]” shape. The auto-
broadcasting of numerical operation with torch tensors will amplify this error.

class tianshou.policy.DiscreteSACPolicy(actor: torch.nn.modules.module.Module, ac-
tor_optim: torch.optim.optimizer.Optimizer,
critic1: torch.nn.modules.module.Module,
critic1_optim: torch.optim.optimizer.Optimizer,
critic2: torch.nn.modules.module.Module,
critic2_optim: torch.optim.optimizer.Optimizer,
tau: float = 0.005, gamma: float = 0.99, al-
pha: Union[float, Tuple[float, torch.Tensor,
torch.optim.optimizer.Optimizer]] = 0.2, re-
ward_normalization: bool = False, estima-
tion_step: int = 1, **kwargs: Any)

Bases: tianshou.policy.modelfree.sac.SACPolicy

Implementation of SAC for Discrete Action Settings. arXiv:1910.07207.
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Parameters

• actor (torch.nn.Module) – the actor network following the rules in BasePolicy .
(s -> logits)

• actor_optim (torch.optim.Optimizer) – the optimizer for actor network.

• critic1 (torch.nn.Module) – the first critic network. (s -> Q(s))

• critic1_optim (torch.optim.Optimizer) – the optimizer for the first critic net-
work.

• critic2 (torch.nn.Module) – the second critic network. (s -> Q(s))

• critic2_optim (torch.optim.Optimizer) – the optimizer for the second critic
network.

• tau (float) – param for soft update of the target network. Default to 0.005.

• gamma (float) – discount factor, in [0, 1]. Default to 0.99.

• torch.Tensor, torch.optim.Optimizer) or float alpha ((float,) –
entropy regularization coefficient. Default to 0.2. If a tuple (target_entropy, log_alpha,
alpha_optim) is provided, the alpha is automatically tuned.

• reward_normalization (bool) – normalize the reward to Normal(0, 1). Default to
False.

See also:

Please refer to BasePolicy for more detailed explanation.

forward(batch: tianshou.data.batch.Batch, state: Optional[Union[dict, tianshou.data.batch.Batch,
numpy.ndarray]] = None, input: str = 'obs', **kwargs: Any)→ tianshou.data.batch.Batch

Compute action over the given batch data.

Returns

A Batch which has 2 keys:

• act the action.

• state the hidden state.

See also:

Please refer to forward() for more detailed explanation.

learn(batch: tianshou.data.batch.Batch, **kwargs: Any)→ Dict[str, float]
Update policy with a given batch of data.

Returns A dict, including the data needed to be logged (e.g., loss).

Note: In order to distinguish the collecting state, updating state and testing state, you can check the policy
state by self.training and self.updating. Please refer to States for policy for more detailed
explanation.

Warning: If you use torch.distributions.Normal and torch.distributions.
Categorical to calculate the log_prob, please be careful about the shape: Categorical distribu-
tion gives “[batch_size]” shape while Normal distribution gives “[batch_size, 1]” shape. The auto-
broadcasting of numerical operation with torch tensors will amplify this error.
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exploration_noise(act: Union[numpy.ndarray, tianshou.data.batch.Batch], batch: tian-
shou.data.batch.Batch)→ Union[numpy.ndarray, tianshou.data.batch.Batch]

Modify the action from policy.forward with exploration noise.

Parameters

• act – a data batch or numpy.ndarray which is the action taken by policy.forward.

• batch – the input batch for policy.forward, kept for advanced usage.

Returns action in the same form of input “act” but with added exploration noise.

training: bool

actor: torch.nn.modules.module.Module

actor_optim: torch.optim.optimizer.Optimizer

critic: torch.nn.modules.module.Module

critic_optim: torch.optim.optimizer.Optimizer

1.10.3 Imitation

class tianshou.policy.ImitationPolicy(model: torch.nn.modules.module.Module, optim:
torch.optim.optimizer.Optimizer, **kwargs: Any)

Bases: tianshou.policy.base.BasePolicy

Implementation of vanilla imitation learning.

Parameters

• model (torch.nn.Module) – a model following the rules in BasePolicy . (s -> a)

• optim (torch.optim.Optimizer) – for optimizing the model.

• action_space (gym.Space) – env’s action space.

See also:

Please refer to BasePolicy for more detailed explanation.

forward(batch: tianshou.data.batch.Batch, state: Optional[Union[dict, tianshou.data.batch.Batch,
numpy.ndarray]] = None, **kwargs: Any)→ tianshou.data.batch.Batch

Compute action over the given batch data.

Returns

A Batch which MUST have the following keys:

• act an numpy.ndarray or a torch.Tensor, the action over given batch data.

• state a dict, an numpy.ndarray or a torch.Tensor, the internal state of the policy, None
as default.

Other keys are user-defined. It depends on the algorithm. For example,

# some code
return Batch(logits=..., act=..., state=None, dist=...)

The keyword policy is reserved and the corresponding data will be stored into the replay buffer. For
instance,
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# some code
return Batch(..., policy=Batch(log_prob=dist.log_prob(act)))
# and in the sampled data batch, you can directly use
# batch.policy.log_prob to get your data.

Note: In continuous action space, you should do another step “map_action” to get the real action:

act = policy(batch).act # doesn't map to the target action range
act = policy.map_action(act, batch)

learn(batch: tianshou.data.batch.Batch, **kwargs: Any)→ Dict[str, float]
Update policy with a given batch of data.

Returns A dict, including the data needed to be logged (e.g., loss).

Note: In order to distinguish the collecting state, updating state and testing state, you can check the policy
state by self.training and self.updating. Please refer to States for policy for more detailed
explanation.

Warning: If you use torch.distributions.Normal and torch.distributions.
Categorical to calculate the log_prob, please be careful about the shape: Categorical distribu-
tion gives “[batch_size]” shape while Normal distribution gives “[batch_size, 1]” shape. The auto-
broadcasting of numerical operation with torch tensors will amplify this error.

training: bool

class tianshou.policy.DiscreteBCQPolicy(model: torch.nn.modules.module.Module, imi-
tator: torch.nn.modules.module.Module, optim:
torch.optim.optimizer.Optimizer, discount_factor:
float = 0.99, estimation_step: int = 1, tar-
get_update_freq: int = 8000, eval_eps: float
= 0.001, unlikely_action_threshold: float =
0.3, imitation_logits_penalty: float = 0.01, re-
ward_normalization: bool = False, **kwargs:
Any)

Bases: tianshou.policy.modelfree.dqn.DQNPolicy

Implementation of discrete BCQ algorithm. arXiv:1910.01708.

Parameters

• model (torch.nn.Module) – a model following the rules in BasePolicy . (s ->
q_value)

• imitator (torch.nn.Module) – a model following the rules in BasePolicy . (s ->
imitation_logits)

• optim (torch.optim.Optimizer) – a torch.optim for optimizing the model.

• discount_factor (float) – in [0, 1].

• estimation_step (int) – the number of steps to look ahead. Default to 1.

• target_update_freq (int) – the target network update frequency.
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• eval_eps (float) – the epsilon-greedy noise added in evaluation.

• unlikely_action_threshold (float) – the threshold (tau) for unlikely actions, as
shown in Equ. (17) in the paper. Default to 0.3.

• imitation_logits_penalty (float) – regularization weight for imitation logits.
Default to 1e-2.

• reward_normalization (bool) – normalize the reward to Normal(0, 1). Default to
False.

See also:

Please refer to BasePolicy for more detailed explanation.

train(mode: bool = True)→ tianshou.policy.imitation.discrete_bcq.DiscreteBCQPolicy
Set the module in training mode, except for the target network.

forward(batch: tianshou.data.batch.Batch, state: Optional[Union[dict, tianshou.data.batch.Batch,
numpy.ndarray]] = None, input: str = 'obs', **kwargs: Any)→ tianshou.data.batch.Batch

Compute action over the given batch data.

If you need to mask the action, please add a “mask” into batch.obs, for example, if we have an environment
that has “0/1/2” three actions:

batch == Batch(
obs=Batch(

obs="original obs, with batch_size=1 for demonstration",
mask=np.array([[False, True, False]]),
# action 1 is available
# action 0 and 2 are unavailable

),
...

)

Parameters eps (float) – in [0, 1], for epsilon-greedy exploration method.

Returns

A Batch which has 3 keys:

• act the action.

• logits the network’s raw output.

• state the hidden state.

See also:

Please refer to forward() for more detailed explanation.

learn(batch: tianshou.data.batch.Batch, **kwargs: Any)→ Dict[str, float]
Update policy with a given batch of data.

Returns A dict, including the data needed to be logged (e.g., loss).

Note: In order to distinguish the collecting state, updating state and testing state, you can check the policy
state by self.training and self.updating. Please refer to States for policy for more detailed
explanation.
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Warning: If you use torch.distributions.Normal and torch.distributions.
Categorical to calculate the log_prob, please be careful about the shape: Categorical distribu-
tion gives “[batch_size]” shape while Normal distribution gives “[batch_size, 1]” shape. The auto-
broadcasting of numerical operation with torch tensors will amplify this error.

training: bool

class tianshou.policy.DiscreteCQLPolicy(model: torch.nn.modules.module.Module, optim:
torch.optim.optimizer.Optimizer, discount_factor:
float = 0.99, num_quantiles: int = 200, estima-
tion_step: int = 1, target_update_freq: int = 0, re-
ward_normalization: bool = False, min_q_weight:
float = 10.0, **kwargs: Any)

Bases: tianshou.policy.modelfree.qrdqn.QRDQNPolicy

Implementation of discrete Conservative Q-Learning algorithm. arXiv:2006.04779.

Parameters

• model (torch.nn.Module) – a model following the rules in BasePolicy . (s ->
logits)

• optim (torch.optim.Optimizer) – a torch.optim for optimizing the model.

• discount_factor (float) – in [0, 1].

• num_quantiles (int) – the number of quantile midpoints in the inverse cumulative
distribution function of the value. Default to 200.

• estimation_step (int) – the number of steps to look ahead. Default to 1.

• target_update_freq (int) – the target network update frequency (0 if you do not use
the target network).

• reward_normalization (bool) – normalize the reward to Normal(0, 1). Default to
False.

• min_q_weight (float) – the weight for the cql loss.

See also:

Please refer to QRDQNPolicy for more detailed explanation.

learn(batch: tianshou.data.batch.Batch, **kwargs: Any)→ Dict[str, float]
Update policy with a given batch of data.

Returns A dict, including the data needed to be logged (e.g., loss).

Note: In order to distinguish the collecting state, updating state and testing state, you can check the policy
state by self.training and self.updating. Please refer to States for policy for more detailed
explanation.

Warning: If you use torch.distributions.Normal and torch.distributions.
Categorical to calculate the log_prob, please be careful about the shape: Categorical distribu-
tion gives “[batch_size]” shape while Normal distribution gives “[batch_size, 1]” shape. The auto-
broadcasting of numerical operation with torch tensors will amplify this error.
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training: bool

class tianshou.policy.DiscreteCRRPolicy(actor: torch.nn.modules.module.Module,
critic: torch.nn.modules.module.Module, optim:
torch.optim.optimizer.Optimizer, discount_factor:
float = 0.99, policy_improvement_mode: str =
'exp', ratio_upper_bound: float = 20.0, beta:
float = 1.0, min_q_weight: float = 10.0, tar-
get_update_freq: int = 0, reward_normalization:
bool = False, **kwargs: Any)

Bases: tianshou.policy.modelfree.pg.PGPolicy

Implementation of discrete Critic Regularized Regression. arXiv:2006.15134.

Parameters

• actor (torch.nn.Module) – the actor network following the rules in BasePolicy .
(s -> logits)

• critic (torch.nn.Module) – the action-value critic (i.e., Q function) network. (s ->
Q(s, *))

• optim (torch.optim.Optimizer) – a torch.optim for optimizing the model.

• discount_factor (float) – in [0, 1]. Default to 0.99.

• policy_improvement_mode (str) – type of the weight function f. Possible values:
“binary”/”exp”/”all”. Default to “exp”.

• ratio_upper_bound (float) – when policy_improvement_mode is “exp”, the value
of the exp function is upper-bounded by this parameter. Default to 20.

• beta (float) – when policy_improvement_mode is “exp”, this is the denominator of the
exp function. Default to 1.

• min_q_weight (float) – weight for CQL loss/regularizer. Default to 10.

• target_update_freq (int) – the target network update frequency (0 if you do not use
the target network). Default to 0.

• reward_normalization (bool) – normalize the reward to Normal(0, 1). Default to
False.

See also:

Please refer to PGPolicy for more detailed explanation.

sync_weight()→ None

training: bool

learn(batch: tianshou.data.batch.Batch, **kwargs: Any)→ Dict[str, float]
Update policy with a given batch of data.

Returns A dict, including the data needed to be logged (e.g., loss).

Note: In order to distinguish the collecting state, updating state and testing state, you can check the policy
state by self.training and self.updating. Please refer to States for policy for more detailed
explanation.
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Warning: If you use torch.distributions.Normal and torch.distributions.
Categorical to calculate the log_prob, please be careful about the shape: Categorical distribu-
tion gives “[batch_size]” shape while Normal distribution gives “[batch_size, 1]” shape. The auto-
broadcasting of numerical operation with torch tensors will amplify this error.

1.10.4 Model-based

class tianshou.policy.PSRLPolicy(trans_count_prior: numpy.ndarray, rew_mean_prior:
numpy.ndarray, rew_std_prior: numpy.ndarray, dis-
count_factor: float = 0.99, epsilon: float = 0.01,
add_done_loop: bool = False, **kwargs: Any)

Bases: tianshou.policy.base.BasePolicy

Implementation of Posterior Sampling Reinforcement Learning.

Reference: Strens M. A Bayesian framework for reinforcement learning [C] //ICML. 2000, 2000: 943-950.

Parameters

• trans_count_prior (np.ndarray) – dirichlet prior (alphas), with shape (n_state,
n_action, n_state).

• rew_mean_prior (np.ndarray) – means of the normal priors of rewards, with shape
(n_state, n_action).

• rew_std_prior (np.ndarray) – standard deviations of the normal priors of rewards,
with shape (n_state, n_action).

• discount_factor (float) – in [0, 1].

• epsilon (float) – for precision control in value iteration.

• add_done_loop (bool) – whether to add an extra self-loop for the terminal state in
MDP. Default to False.

See also:

Please refer to BasePolicy for more detailed explanation.

forward(batch: tianshou.data.batch.Batch, state: Optional[Union[dict, tianshou.data.batch.Batch,
numpy.ndarray]] = None, **kwargs: Any)→ tianshou.data.batch.Batch

Compute action over the given batch data with PSRL model.

Returns A Batch with “act” key containing the action.

See also:

Please refer to forward() for more detailed explanation.

learn(batch: tianshou.data.batch.Batch, *args: Any, **kwargs: Any)→ Dict[str, float]
Update policy with a given batch of data.

Returns A dict, including the data needed to be logged (e.g., loss).

Note: In order to distinguish the collecting state, updating state and testing state, you can check the policy
state by self.training and self.updating. Please refer to States for policy for more detailed
explanation.
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Warning: If you use torch.distributions.Normal and torch.distributions.
Categorical to calculate the log_prob, please be careful about the shape: Categorical distribu-
tion gives “[batch_size]” shape while Normal distribution gives “[batch_size, 1]” shape. The auto-
broadcasting of numerical operation with torch tensors will amplify this error.

training: bool

1.10.5 Multi-agent

class tianshou.policy.MultiAgentPolicyManager(policies: List[tianshou.policy.base.BasePolicy],
**kwargs: Any)

Bases: tianshou.policy.base.BasePolicy

Multi-agent policy manager for MARL.

This multi-agent policy manager accepts a list of BasePolicy . It dispatches the batch data to each of these
policies when the “forward” is called. The same as “process_fn” and “learn”: it splits the data and feeds them
to each policy. A figure in Multi-Agent Reinforcement Learning can help you better understand this procedure.

replace_policy(policy: tianshou.policy.base.BasePolicy, agent_id: int)→ None
Replace the “agent_id”th policy in this manager.

process_fn(batch: tianshou.data.batch.Batch, buffer: tianshou.data.buffer.base.ReplayBuffer, in-
dices: numpy.ndarray)→ tianshou.data.batch.Batch

Dispatch batch data from obs.agent_id to every policy’s process_fn.

Save original multi-dimensional rew in “save_rew”, set rew to the reward of each agent during their “pro-
cess_fn”, and restore the original reward afterwards.

exploration_noise(act: Union[numpy.ndarray, tianshou.data.batch.Batch], batch: tian-
shou.data.batch.Batch)→ Union[numpy.ndarray, tianshou.data.batch.Batch]

Add exploration noise from sub-policy onto act.

forward(batch: tianshou.data.batch.Batch, state: Optional[Union[dict, tianshou.data.batch.Batch]] =
None, **kwargs: Any)→ tianshou.data.batch.Batch

Dispatch batch data from obs.agent_id to every policy’s forward.

Parameters state – if None, it means all agents have no state. If not None, it should contain
keys of “agent_1”, “agent_2”, . . .

Returns a Batch with the following contents:

{
"act": actions corresponding to the input
"state": {

"agent_1": output state of agent_1's policy for the state
"agent_2": xxx
...
"agent_n": xxx}

"out": {
"agent_1": output of agent_1's policy for the input
"agent_2": xxx
...
"agent_n": xxx}

}

learn(batch: tianshou.data.batch.Batch, **kwargs: Any)→ Dict[str, Union[float, List[float]]]
Dispatch the data to all policies for learning.
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Returns a dict with the following contents:

{
"agent_1/item1": item 1 of agent_1's policy.learn output
"agent_1/item2": item 2 of agent_1's policy.learn output
"agent_2/xxx": xxx
...
"agent_n/xxx": xxx

}

training: bool

1.11 tianshou.trainer

Trainer package.

tianshou.trainer.offpolicy_trainer(policy: tianshou.policy.base.BasePolicy, train_collector:
tianshou.data.collector.Collector, test_collector:
tianshou.data.collector.Collector, max_epoch:
int, step_per_epoch: int, step_per_collect: int,
episode_per_test: int, batch_size: int, update_per_step:
Union[int, float] = 1, train_fn: Optional[Callable[[int,
int], None]] = None, test_fn: Optional[Callable[[int,
Optional[int]], None]] = None, stop_fn: Op-
tional[Callable[[float], bool]] = None, save_fn:
Optional[Callable[[tianshou.policy.base.BasePolicy],
None]] = None, save_checkpoint_fn: Op-
tional[Callable[[int, int, int], None]] = None, re-
sume_from_log: bool = False, reward_metric: Op-
tional[Callable[[numpy.ndarray], numpy.ndarray]] =
None, logger: tianshou.utils.logger.base.BaseLogger =
<tianshou.utils.logger.base.LazyLogger object>, verbose:
bool = True, test_in_train: bool = True) → Dict[str,
Union[float, str]]

A wrapper for off-policy trainer procedure.

The “step” in trainer means an environment step (a.k.a. transition).

Parameters

• policy – an instance of the BasePolicy class.

• train_collector (Collector) – the collector used for training.

• test_collector (Collector) – the collector used for testing.

• max_epoch (int) – the maximum number of epochs for training. The training process
might be finished before reaching max_epoch if stop_fn is set.

• step_per_epoch (int) – the number of transitions collected per epoch.

• step_per_collect (int) – the number of transitions the collector would collect be-
fore the network update, i.e., trainer will collect “step_per_collect” transitions and do some
policy network update repeatedly in each epoch.

• episode_per_test – the number of episodes for one policy evaluation.

• batch_size (int) – the batch size of sample data, which is going to feed in the policy
network.
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• update_per_step (int/float) – the number of times the policy network would
be updated per transition after (step_per_collect) transitions are collected, e.g., if up-
date_per_step set to 0.3, and step_per_collect is 256, policy will be updated round(256 *
0.3 = 76.8) = 77 times after 256 transitions are collected by the collector. Default to 1.

• train_fn (function) – a hook called at the beginning of training in each epoch. It
can be used to perform custom additional operations, with the signature f( num_epoch:
int, step_idx: int) -> None.

• test_fn (function) – a hook called at the beginning of testing in each epoch. It can
be used to perform custom additional operations, with the signature f( num_epoch:
int, step_idx: int) -> None.

• save_fn (function) – a hook called when the undiscounted average mean reward
in evaluation phase gets better, with the signature f(policy: BasePolicy) ->
None.

• save_checkpoint_fn (function) – a function to save training process, with the
signature f(epoch: int, env_step: int, gradient_step: int) ->
None; you can save whatever you want.

• resume_from_log (bool) – resume env_step/gradient_step and other metadata from
existing tensorboard log. Default to False.

• stop_fn (function) – a function with signature f(mean_rewards: float) ->
bool, receives the average undiscounted returns of the testing result, returns a boolean
which indicates whether reaching the goal.

• reward_metric (function) – a function with signature f(rewards: np.
ndarray with shape (num_episode, agent_num)) -> np.ndarray
with shape (num_episode,), used in multi-agent RL. We need to return a single
scalar for each episode’s result to monitor training in the multi-agent RL setting. This
function specifies what is the desired metric, e.g., the reward of agent 1 or the average
reward over all agents.

• logger (BaseLogger) – A logger that logs statistics during training/testing/updating.
Default to a logger that doesn’t log anything.

• verbose (bool) – whether to print the information. Default to True.

• test_in_train (bool) – whether to test in the training phase. Default to True.

Returns See gather_info().
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tianshou.trainer.onpolicy_trainer(policy: tianshou.policy.base.BasePolicy, train_collector:
tianshou.data.collector.Collector, test_collector:
tianshou.data.collector.Collector, max_epoch: int,
step_per_epoch: int, repeat_per_collect: int,
episode_per_test: int, batch_size: int, step_per_collect:
Optional[int] = None, episode_per_collect: Op-
tional[int] = None, train_fn: Optional[Callable[[int,
int], None]] = None, test_fn: Optional[Callable[[int,
Optional[int]], None]] = None, stop_fn: Op-
tional[Callable[[float], bool]] = None, save_fn: Op-
tional[Callable[[tianshou.policy.base.BasePolicy],
None]] = None, save_checkpoint_fn: Op-
tional[Callable[[int, int, int], None]] = None, re-
sume_from_log: bool = False, reward_metric: Op-
tional[Callable[[numpy.ndarray], numpy.ndarray]] =
None, logger: tianshou.utils.logger.base.BaseLogger =
<tianshou.utils.logger.base.LazyLogger object>, verbose:
bool = True, test_in_train: bool = True) → Dict[str,
Union[float, str]]

A wrapper for on-policy trainer procedure.

The “step” in trainer means an environment step (a.k.a. transition).

Parameters

• policy – an instance of the BasePolicy class.

• train_collector (Collector) – the collector used for training.

• test_collector (Collector) – the collector used for testing.

• max_epoch (int) – the maximum number of epochs for training. The training process
might be finished before reaching max_epoch if stop_fn is set.

• step_per_epoch (int) – the number of transitions collected per epoch.

• repeat_per_collect (int) – the number of repeat time for policy learning, for ex-
ample, set it to 2 means the policy needs to learn each given batch data twice.

• episode_per_test (int) – the number of episodes for one policy evaluation.

• batch_size (int) – the batch size of sample data, which is going to feed in the policy
network.

• step_per_collect (int) – the number of transitions the collector would collect be-
fore the network update, i.e., trainer will collect “step_per_collect” transitions and do some
policy network update repeatedly in each epoch.

• episode_per_collect (int) – the number of episodes the collector would collect
before the network update, i.e., trainer will collect “episode_per_collect” episodes and do
some policy network update repeatedly in each epoch.

• train_fn (function) – a hook called at the beginning of training in each epoch. It
can be used to perform custom additional operations, with the signature f( num_epoch:
int, step_idx: int) -> None.

• test_fn (function) – a hook called at the beginning of testing in each epoch. It can
be used to perform custom additional operations, with the signature f( num_epoch:
int, step_idx: int) -> None.
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• save_fn (function) – a hook called when the undiscounted average mean reward
in evaluation phase gets better, with the signature f(policy: BasePolicy) ->
None.

• save_checkpoint_fn (function) – a function to save training process, with the
signature f(epoch: int, env_step: int, gradient_step: int) ->
None; you can save whatever you want.

• resume_from_log (bool) – resume env_step/gradient_step and other metadata from
existing tensorboard log. Default to False.

• stop_fn (function) – a function with signature f(mean_rewards: float) ->
bool, receives the average undiscounted returns of the testing result, returns a boolean
which indicates whether reaching the goal.

• reward_metric (function) – a function with signature f(rewards: np.
ndarray with shape (num_episode, agent_num)) -> np.ndarray
with shape (num_episode,), used in multi-agent RL. We need to return a single
scalar for each episode’s result to monitor training in the multi-agent RL setting. This
function specifies what is the desired metric, e.g., the reward of agent 1 or the average
reward over all agents.

• logger (BaseLogger) – A logger that logs statistics during training/testing/updating.
Default to a logger that doesn’t log anything.

• verbose (bool) – whether to print the information. Default to True.

• test_in_train (bool) – whether to test in the training phase. Default to True.

Returns See gather_info().

Note: Only either one of step_per_collect and episode_per_collect can be specified.

tianshou.trainer.offline_trainer(policy: tianshou.policy.base.BasePolicy, buffer: tian-
shou.data.buffer.base.ReplayBuffer, test_collector:
tianshou.data.collector.Collector, max_epoch: int,
update_per_epoch: int, episode_per_test: int,
batch_size: int, test_fn: Optional[Callable[[int,
Optional[int]], None]] = None, stop_fn: Op-
tional[Callable[[float], bool]] = None, save_fn: Op-
tional[Callable[[tianshou.policy.base.BasePolicy],
None]] = None, save_checkpoint_fn: Op-
tional[Callable[[int, int, int], None]] = None, re-
sume_from_log: bool = False, reward_metric: Op-
tional[Callable[[numpy.ndarray], numpy.ndarray]] =
None, logger: tianshou.utils.logger.base.BaseLogger =
<tianshou.utils.logger.base.LazyLogger object>, verbose:
bool = True)→ Dict[str, Union[float, str]]

A wrapper for offline trainer procedure.

The “step” in offline trainer means a gradient step.

Parameters

• policy – an instance of the BasePolicy class.

• test_collector (Collector) – the collector used for testing.

• max_epoch (int) – the maximum number of epochs for training. The training process
might be finished before reaching max_epoch if stop_fn is set.
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• update_per_epoch (int) – the number of policy network updates, so-called gradient
steps, per epoch.

• episode_per_test – the number of episodes for one policy evaluation.

• batch_size (int) – the batch size of sample data, which is going to feed in the policy
network.

• test_fn (function) – a hook called at the beginning of testing in each epoch. It can
be used to perform custom additional operations, with the signature f( num_epoch:
int, step_idx: int) -> None.

• save_fn (function) – a hook called when the undiscounted average mean reward
in evaluation phase gets better, with the signature f(policy: BasePolicy) ->
None.

• save_checkpoint_fn (function) – a function to save training process, with the
signature f(epoch: int, env_step: int, gradient_step: int) ->
None; you can save whatever you want. Because offline-RL doesn’t have env_step, the
env_step is always 0 here.

• resume_from_log (bool) – resume gradient_step and other metadata from existing
tensorboard log. Default to False.

• stop_fn (function) – a function with signature f(mean_rewards: float) ->
bool, receives the average undiscounted returns of the testing result, returns a boolean
which indicates whether reaching the goal.

• reward_metric (function) – a function with signature f(rewards: np.
ndarray with shape (num_episode, agent_num)) -> np.ndarray
with shape (num_episode,), used in multi-agent RL. We need to return a single
scalar for each episode’s result to monitor training in the multi-agent RL setting. This
function specifies what is the desired metric, e.g., the reward of agent 1 or the average
reward over all agents.

• logger (BaseLogger) – A logger that logs statistics during updating/testing. Default to
a logger that doesn’t log anything.

• verbose (bool) – whether to print the information. Default to True.

Returns See gather_info().

tianshou.trainer.test_episode(policy: tianshou.policy.base.BasePolicy, collector: tian-
shou.data.collector.Collector, test_fn: Optional[Callable[[int,
Optional[int]], None]], epoch: int, n_episode: int, logger:
Optional[tianshou.utils.logger.base.BaseLogger] = None,
global_step: Optional[int] = None, reward_metric: Op-
tional[Callable[[numpy.ndarray], numpy.ndarray]] = None) →
Dict[str, Any]

A simple wrapper of testing policy in collector.

tianshou.trainer.gather_info(start_time: float, train_c: Op-
tional[tianshou.data.collector.Collector], test_c: tian-
shou.data.collector.Collector, best_reward: float, best_reward_std:
float)→ Dict[str, Union[float, str]]

A simple wrapper of gathering information from collectors.

Returns

A dictionary with the following keys:

• train_step the total collected step of training collector;
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• train_episode the total collected episode of training collector;

• train_time/collector the time for collecting transitions in the training collector;

• train_time/model the time for training models;

• train_speed the speed of training (env_step per second);

• test_step the total collected step of test collector;

• test_episode the total collected episode of test collector;

• test_time the time for testing;

• test_speed the speed of testing (env_step per second);

• best_reward the best reward over the test results;

• duration the total elapsed time.

1.12 tianshou.exploration

class tianshou.exploration.BaseNoise
Bases: abc.ABC, object

The action noise base class.

reset()→ None
Reset to the initial state.

abstract __call__(size: Sequence[int])→ numpy.ndarray
Generate new noise.

class tianshou.exploration.GaussianNoise(mu: float = 0.0, sigma: float = 1.0)
Bases: tianshou.exploration.random.BaseNoise

The vanilla Gaussian process, for exploration in DDPG by default.

__call__(size: Sequence[int])→ numpy.ndarray
Generate new noise.

class tianshou.exploration.OUNoise(mu: float = 0.0, sigma: float = 0.3, theta: float = 0.15, dt:
float = 0.01, x0: Optional[Union[float, numpy.ndarray]] =
None)

Bases: tianshou.exploration.random.BaseNoise

Class for Ornstein-Uhlenbeck process, as used for exploration in DDPG.

Usage:

# init
self.noise = OUNoise()
# generate noise
noise = self.noise(logits.shape, eps)

For required parameters, you can refer to the stackoverflow page. However, our experiment result shows that
(similar to OpenAI SpinningUp) using vanilla Gaussian process has little difference from using the Ornstein-
Uhlenbeck process.

reset()→ None
Reset to the initial state.
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__call__(size: Sequence[int], mu: Optional[float] = None)→ numpy.ndarray
Generate new noise.

Return an numpy array which size is equal to size.

1.13 tianshou.utils

Utils package.

class tianshou.utils.MovAvg(size: int = 100)
Bases: object

Class for moving average.

It will automatically exclude the infinity and NaN. Usage:

>>> stat = MovAvg(size=66)
>>> stat.add(torch.tensor(5))
5.0
>>> stat.add(float('inf')) # which will not add to stat
5.0
>>> stat.add([6, 7, 8])
6.5
>>> stat.get()
6.5
>>> print(f'{stat.mean():.2f}±{stat.std():.2f}')
6.50±1.12

add(x: Union[numbers.Number, numpy.number, list, numpy.ndarray, torch.Tensor])→ float
Add a scalar into MovAvg.

You can add torch.Tensor with only one element, a python scalar, or a list of python scalar.

get()→ float
Get the average.

mean()→ float
Get the average. Same as get().

std()→ float
Get the standard deviation.

class tianshou.utils.RunningMeanStd(mean: Union[float, numpy.ndarray] = 0.0, std:
Union[float, numpy.ndarray] = 1.0)

Bases: object

Calculates the running mean and std of a data stream.

https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm

update(x: numpy.ndarray)→ None
Add a batch of item into RMS with the same shape, modify mean/var/count.

class tianshou.utils.BaseLogger(train_interval: int = 1000, test_interval: int = 1, up-
date_interval: int = 1000)

Bases: abc.ABC

The base class for any logger which is compatible with trainer.

Try to overwrite write() method to use your own writer.

Parameters
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• train_interval (int) – the log interval in log_train_data(). Default to 1000.

• test_interval (int) – the log interval in log_test_data(). Default to 1.

• update_interval (int) – the log interval in log_update_data(). Default to 1000.

abstract write(step_type: str, step: int, data: Dict[str, Union[int, numbers.Number, numpy.number,
numpy.ndarray]])→ None

Specify how the writer is used to log data.

Parameters

• step_type (str) – namespace which the data dict belongs to.

• step (int) – stands for the ordinate of the data dict.

• data (dict) – the data to write with format {key: value}.

log_train_data(collect_result: dict, step: int)→ None
Use writer to log statistics generated during training.

Parameters

• collect_result – a dict containing information of data collected in training stage,
i.e., returns of collector.collect().

• step (int) – stands for the timestep the collect_result being logged.

log_test_data(collect_result: dict, step: int)→ None
Use writer to log statistics generated during evaluating.

Parameters

• collect_result – a dict containing information of data collected in evaluating stage,
i.e., returns of collector.collect().

• step (int) – stands for the timestep the collect_result being logged.

log_update_data(update_result: dict, step: int)→ None
Use writer to log statistics generated during updating.

Parameters

• update_result – a dict containing information of data collected in updating stage, i.e.,
returns of policy.update().

• step (int) – stands for the timestep the collect_result being logged.

save_data(epoch: int, env_step: int, gradient_step: int, save_checkpoint_fn: Optional[Callable[[int,
int, int], None]] = None)→ None

Use writer to log metadata when calling save_checkpoint_fn in trainer.

Parameters

• epoch (int) – the epoch in trainer.

• env_step (int) – the env_step in trainer.

• gradient_step (int) – the gradient_step in trainer.

• save_checkpoint_fn (function) – a hook defined by user, see trainer documen-
tation for detail.

restore_data()→ Tuple[int, int, int]
Return the metadata from existing log.

If it finds nothing or an error occurs during the recover process, it will return the default parameters.
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Returns epoch, env_step, gradient_step.

class tianshou.utils.TensorboardLogger(writer: torch.utils.tensorboard.writer.SummaryWriter,
train_interval: int = 1000, test_interval: int = 1,
update_interval: int = 1000, save_interval: int = 1)

Bases: tianshou.utils.logger.base.BaseLogger

A logger that relies on tensorboard SummaryWriter by default to visualize and log statistics.

Parameters

• writer (SummaryWriter) – the writer to log data.

• train_interval (int) – the log interval in log_train_data(). Default to 1000.

• test_interval (int) – the log interval in log_test_data(). Default to 1.

• update_interval (int) – the log interval in log_update_data(). Default to 1000.

• save_interval (int) – the save interval in save_data(). Default to 1 (save at the end of
each epoch).

write(step_type: str, step: int, data: Dict[str, Union[int, numbers.Number, numpy.number,
numpy.ndarray]])→ None

Specify how the writer is used to log data.

Parameters

• step_type (str) – namespace which the data dict belongs to.

• step (int) – stands for the ordinate of the data dict.

• data (dict) – the data to write with format {key: value}.

save_data(epoch: int, env_step: int, gradient_step: int, save_checkpoint_fn: Optional[Callable[[int,
int, int], None]] = None)→ None

Use writer to log metadata when calling save_checkpoint_fn in trainer.

Parameters

• epoch (int) – the epoch in trainer.

• env_step (int) – the env_step in trainer.

• gradient_step (int) – the gradient_step in trainer.

• save_checkpoint_fn (function) – a hook defined by user, see trainer documen-
tation for detail.

restore_data()→ Tuple[int, int, int]
Return the metadata from existing log.

If it finds nothing or an error occurs during the recover process, it will return the default parameters.

Returns epoch, env_step, gradient_step.

class tianshou.utils.BasicLogger(*args: Any, **kwargs: Any)
Bases: tianshou.utils.logger.tensorboard.TensorboardLogger

BasicLogger has changed its name to TensorboardLogger in #427.

This class is for compatibility.

class tianshou.utils.LazyLogger
Bases: tianshou.utils.logger.base.BaseLogger

A logger that does nothing. Used as the placeholder in trainer.
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write(step_type: str, step: int, data: Dict[str, Union[int, numbers.Number, numpy.number,
numpy.ndarray]])→ None

The LazyLogger writes nothing.

class tianshou.utils.WandbLogger(train_interval: int = 1000, test_interval: int = 1, up-
date_interval: int = 1000, save_interval: int = 1000, project:
str = 'tianshou', name: Optional[str] = None, entity: Op-
tional[str] = None, run_id: Optional[str] = None, config:
Optional[argparse.Namespace] = None)

Bases: tianshou.utils.logger.base.BaseLogger

Weights and Biases logger that sends data to https://wandb.ai/.

This logger creates three panels with plots: train, test, and update. Make sure to select the correct access for
each panel in weights and biases:

• train/env_step for train plots

• test/env_step for test plots

• update/gradient_step for update plots

Example of usage:

with wandb.init(project="My Project"):
logger = WandBLogger()
result = onpolicy_trainer(policy, train_collector, test_collector,

logger=logger)

Parameters

• train_interval (int) – the log interval in log_train_data(). Default to 1000.

• test_interval (int) – the log interval in log_test_data(). Default to 1.

• update_interval (int) – the log interval in log_update_data(). Default to 1000.

• project (str) – W&B project name. Default to “tianshou”.

• name (str) – W&B run name. Default to None. If None, random name is assigned.

• entity (str) – W&B team/organization name. Default to None.

• run_id (str) – run id of W&B run to be resumed. Default to None.

• config (argparse.Namespace) – experiment configurations. Default to None.

write(step_type: str, step: int, data: Dict[str, Union[int, numbers.Number, numpy.number,
numpy.ndarray]])→ None

Specify how the writer is used to log data.

Parameters

• step_type (str) – namespace which the data dict belongs to.

• step (int) – stands for the ordinate of the data dict.

• data (dict) – the data to write with format {key: value}.

save_data(epoch: int, env_step: int, gradient_step: int, save_checkpoint_fn: Optional[Callable[[int,
int, int], None]] = None)→ None

Use writer to log metadata when calling save_checkpoint_fn in trainer.

Parameters

• epoch (int) – the epoch in trainer.
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• env_step (int) – the env_step in trainer.

• gradient_step (int) – the gradient_step in trainer.

• save_checkpoint_fn (function) – a hook defined by user, see trainer documen-
tation for detail.

restore_data()→ Tuple[int, int, int]
Return the metadata from existing log.

If it finds nothing or an error occurs during the recover process, it will return the default parameters.

Returns epoch, env_step, gradient_step.

1.13.1 Pre-defined Networks

Common

tianshou.utils.net.common.miniblock(input_size: int, output_size: int = 0, norm_layer:
Optional[Type[torch.nn.modules.module.Module]]
= None, activation: Op-
tional[Type[torch.nn.modules.module.Module]] = None,
linear_layer: Type[torch.nn.modules.linear.Linear]
= <class 'torch.nn.modules.linear.Linear'>) →
List[torch.nn.modules.module.Module]

Construct a miniblock with given input/output-size, norm layer and activation.

class tianshou.utils.net.common.MLP(input_dim: int, output_dim: int = 0, hid-
den_sizes: Sequence[int] = (), norm_layer: Op-
tional[Union[Type[torch.nn.modules.module.Module],
Sequence[Type[torch.nn.modules.module.Module]]]]
= None, activation: Op-
tional[Union[Type[torch.nn.modules.module.Module],
Sequence[Type[torch.nn.modules.module.Module]]]]
= <class 'torch.nn.modules.activation.ReLU'>, de-
vice: Optional[Union[str, int, torch.device]] = None,
linear_layer: Type[torch.nn.modules.linear.Linear] =
<class 'torch.nn.modules.linear.Linear'>)

Bases: torch.nn.modules.module.Module

Simple MLP backbone.

Create a MLP of size input_dim * hidden_sizes[0] * hidden_sizes[1] * . . . * hidden_sizes[-1] * output_dim

Parameters

• input_dim (int) – dimension of the input vector.

• output_dim (int) – dimension of the output vector. If set to 0, there is no final linear
layer.

• hidden_sizes – shape of MLP passed in as a list, not including input_dim and out-
put_dim.

• norm_layer – use which normalization before activation, e.g., nn.LayerNorm and
nn.BatchNorm1d. Default to no normalization. You can also pass a list of normalization
modules with the same length of hidden_sizes, to use different normalization module in
different layers. Default to no normalization.
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• activation – which activation to use after each layer, can be both the same activation
for all layers if passed in nn.Module, or different activation for different Modules if passed
in a list. Default to nn.ReLU.

• device – which device to create this model on. Default to None.

• linear_layer – use this module as linear layer. Default to nn.Linear.

forward(s: Union[numpy.ndarray, torch.Tensor])→ torch.Tensor
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

training: bool

class tianshou.utils.net.common.Net(state_shape: Union[int, Sequence[int]], ac-
tion_shape: Union[int, Sequence[int]] = 0, hid-
den_sizes: Sequence[int] = (), norm_layer: Op-
tional[Type[torch.nn.modules.module.Module]]
= None, activation: Op-
tional[Type[torch.nn.modules.module.Module]] =
<class 'torch.nn.modules.activation.ReLU'>, device:
Union[str, int, torch.device] = 'cpu', softmax: bool
= False, concat: bool = False, num_atoms: int = 1,
dueling_param: Optional[Tuple[Dict[str, Any], Dict[str,
Any]]] = None)

Bases: torch.nn.modules.module.Module

Wrapper of MLP to support more specific DRL usage.

For advanced usage (how to customize the network), please refer to Build the Network.

Parameters

• state_shape – int or a sequence of int of the shape of state.

• action_shape – int or a sequence of int of the shape of action.

• hidden_sizes – shape of MLP passed in as a list.

• norm_layer – use which normalization before activation, e.g., nn.LayerNorm and
nn.BatchNorm1d. Default to no normalization. You can also pass a list of normalization
modules with the same length of hidden_sizes, to use different normalization module in
different layers. Default to no normalization.

• activation – which activation to use after each layer, can be both the same activation
for all layers if passed in nn.Module, or different activation for different Modules if passed
in a list. Default to nn.ReLU.

• device – specify the device when the network actually runs. Default to “cpu”.

• softmax (bool) – whether to apply a softmax layer over the last layer’s output.

• concat (bool) – whether the input shape is concatenated by state_shape and ac-
tion_shape. If it is True, action_shape is not the output shape, but affects the input
shape only.
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• num_atoms (int) – in order to expand to the net of distributional RL. Default to 1 (not
use).

• dueling_param (bool) – whether to use dueling network to calculate Q values
(for Dueling DQN). If you want to use dueling option, you should pass a tuple of
two dict (first for Q and second for V) stating self-defined arguments as stated in
class:~tianshou.utils.net.common.MLP. Default to None.

See also:

Please refer to MLP for more detailed explanation on the usage of activation, norm_layer, etc.

You can also refer to Actor, Critic, etc, to see how it’s suggested be used.

forward(s: Union[numpy.ndarray, torch.Tensor], state: Optional[Any] = None, info: Dict[str, Any] =
{})→ Tuple[torch.Tensor, Any]

Mapping: s -> flatten (inside MLP)-> logits.

training: bool

class tianshou.utils.net.common.Recurrent(layer_num: int, state_shape: Union[int,
Sequence[int]], action_shape: Union[int,
Sequence[int]], device: Union[str, int,
torch.device] = 'cpu', hidden_layer_size:
int = 128)

Bases: torch.nn.modules.module.Module

Simple Recurrent network based on LSTM.

For advanced usage (how to customize the network), please refer to Build the Network.

forward(s: Union[numpy.ndarray, torch.Tensor], state: Optional[Dict[str, torch.Tensor]] = None, info:
Dict[str, Any] = {})→ Tuple[torch.Tensor, Dict[str, torch.Tensor]]

Mapping: s -> flatten -> logits.

In the evaluation mode, s should be with shape [bsz, dim]; in the training mode, s should be with
shape [bsz, len, dim]. See the code and comment for more detail.

training: bool

class tianshou.utils.net.common.ActorCritic(actor: torch.nn.modules.module.Module,
critic: torch.nn.modules.module.Module)

Bases: torch.nn.modules.module.Module

An actor-critic network for parsing parameters.

Using actor_critic.parameters() instead of set.union or list+list to avoid issue #449.

Parameters

• actor (nn.Module) – the actor network.

• critic (nn.Module) – the critic network.

training: bool

class tianshou.utils.net.common.DataParallelNet(net: torch.nn.modules.module.Module)
Bases: torch.nn.modules.module.Module

DataParallel wrapper for training agent with multi-GPU.

This class does only the conversion of input data type, from numpy array to torch’s Tensor. If the input is a
nested dictionary, the user should create a similar class to do the same thing.

Parameters net (nn.Module) – the network to be distributed in different GPUs.
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forward(s: Union[numpy.ndarray, torch.Tensor], *args: Any, **kwargs: Any)→ Tuple[Any, Any]
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

training: bool

Discrete

class tianshou.utils.net.discrete.Actor(preprocess_net: torch.nn.modules.module.Module,
action_shape: Sequence[int], hidden_sizes: Se-
quence[int] = (), softmax_output: bool = True, pre-
process_net_output_dim: Optional[int] = None,
device: Union[str, int, torch.device] = 'cpu')

Bases: torch.nn.modules.module.Module

Simple actor network.

Will create an actor operated in discrete action space with structure of preprocess_net —> action_shape.

Parameters

• preprocess_net – a self-defined preprocess_net which output a flattened hidden state.

• action_shape – a sequence of int for the shape of action.

• hidden_sizes – a sequence of int for constructing the MLP after preprocess_net. De-
fault to empty sequence (where the MLP now contains only a single linear layer).

• softmax_output (bool) – whether to apply a softmax layer over the last layer’s output.

• preprocess_net_output_dim (int) – the output dimension of preprocess_net.

For advanced usage (how to customize the network), please refer to Build the Network.

See also:

Please refer to Net as an instance of how preprocess_net is suggested to be defined.

forward(s: Union[numpy.ndarray, torch.Tensor], state: Optional[Any] = None, info: Dict[str, Any] =
{})→ Tuple[torch.Tensor, Any]

Mapping: s -> Q(s, *).

training: bool

class tianshou.utils.net.discrete.Critic(preprocess_net: torch.nn.modules.module.Module,
hidden_sizes: Sequence[int] = (), last_size: int
= 1, preprocess_net_output_dim: Optional[int]
= None, device: Union[str, int, torch.device] =
'cpu')

Bases: torch.nn.modules.module.Module

Simple critic network. Will create an actor operated in discrete action space with structure of preprocess_net
—> 1(q value).

Parameters

• preprocess_net – a self-defined preprocess_net which output a flattened hidden state.
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• hidden_sizes – a sequence of int for constructing the MLP after preprocess_net. De-
fault to empty sequence (where the MLP now contains only a single linear layer).

• last_size (int) – the output dimension of Critic network. Default to 1.

• preprocess_net_output_dim (int) – the output dimension of preprocess_net.

For advanced usage (how to customize the network), please refer to Build the Network.

See also:

Please refer to Net as an instance of how preprocess_net is suggested to be defined.

forward(s: Union[numpy.ndarray, torch.Tensor], **kwargs: Any)→ torch.Tensor
Mapping: s -> V(s).

training: bool

class tianshou.utils.net.discrete.CosineEmbeddingNetwork(num_cosines: int, embed-
ding_dim: int)

Bases: torch.nn.modules.module.Module

Cosine embedding network for IQN. Convert a scalar in [0, 1] to a list of n-dim vectors.

Parameters

• num_cosines – the number of cosines used for the embedding.

• embedding_dim – the dimension of the embedding/output.

Note: From https://github.com/ku2482/fqf-iqn-qrdqn.pytorch/blob/master /fqf_iqn_qrdqn/network.py .

forward(taus: torch.Tensor)→ torch.Tensor
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

training: bool

class tianshou.utils.net.discrete.ImplicitQuantileNetwork(preprocess_net:
torch.nn.modules.module.Module,
action_shape: Se-
quence[int], hid-
den_sizes: Se-
quence[int] =
(), num_cosines:
int = 64, prepro-
cess_net_output_dim:
Optional[int] = None,
device: Union[str, int,
torch.device] = 'cpu')

Bases: tianshou.utils.net.discrete.Critic

Implicit Quantile Network.

Parameters
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• preprocess_net – a self-defined preprocess_net which output a flattened hidden state.

• action_dim (int) – the dimension of action space.

• hidden_sizes – a sequence of int for constructing the MLP after preprocess_net. De-
fault to empty sequence (where the MLP now contains only a single linear layer).

• num_cosines (int) – the number of cosines to use for cosine embedding. Default to 64.

• preprocess_net_output_dim (int) – the output dimension of preprocess_net.

Note: Although this class inherits Critic, it is actually a quantile Q-Network with output shape (batch_size,
action_dim, sample_size).

The second item of the first return value is tau vector.

forward(s: Union[numpy.ndarray, torch.Tensor], sample_size: int, **kwargs: Any) → Tuple[Any,
torch.Tensor]

Mapping: s -> Q(s, *).

training: bool

class tianshou.utils.net.discrete.FractionProposalNetwork(num_fractions: int, em-
bedding_dim: int)

Bases: torch.nn.modules.module.Module

Fraction proposal network for FQF.

Parameters

• num_fractions – the number of factions to propose.

• embedding_dim – the dimension of the embedding/input.

Note: Adapted from https://github.com/ku2482/fqf-iqn-qrdqn.pytorch/blob/master /fqf_iqn_qrdqn/network.py
.

forward(state_embeddings: torch.Tensor)→ Tuple[torch.Tensor, torch.Tensor, torch.Tensor]
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

training: bool

class tianshou.utils.net.discrete.FullQuantileFunction(preprocess_net:
torch.nn.modules.module.Module,
action_shape: Se-
quence[int], hidden_sizes:
Sequence[int] = (),
num_cosines: int = 64,
preprocess_net_output_dim:
Optional[int] = None,
device: Union[str, int,
torch.device] = 'cpu')
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Bases: tianshou.utils.net.discrete.ImplicitQuantileNetwork

Full(y parameterized) Quantile Function.

Parameters

• preprocess_net – a self-defined preprocess_net which output a flattened hidden state.

• action_dim (int) – the dimension of action space.

• hidden_sizes – a sequence of int for constructing the MLP after preprocess_net. De-
fault to empty sequence (where the MLP now contains only a single linear layer).

• num_cosines (int) – the number of cosines to use for cosine embedding. Default to 64.

• preprocess_net_output_dim (int) – the output dimension of preprocess_net.

Note: The first return value is a tuple of (quantiles, fractions, quantiles_tau), where fractions is a Batch(taus,
tau_hats, entropies).

forward(s: Union[numpy.ndarray, torch.Tensor], propose_model: tian-
shou.utils.net.discrete.FractionProposalNetwork, fractions: Op-
tional[tianshou.data.batch.Batch] = None, **kwargs: Any)→ Tuple[Any, torch.Tensor]

Mapping: s -> Q(s, *).

training: bool

class tianshou.utils.net.discrete.NoisyLinear(in_features: int, out_features: int,
noisy_std: float = 0.5)

Bases: torch.nn.modules.module.Module

Implementation of Noisy Networks. arXiv:1706.10295.

Parameters

• in_features (int) – the number of input features.

• out_features (int) – the number of output features.

• noisy_std (float) – initial standard deviation of noisy linear layers.

Note: Adapted from https://github.com/ku2482/fqf-iqn-qrdqn.pytorch/blob/master /fqf_iqn_qrdqn/network.py
.

reset()→ None

f(x: torch.Tensor)→ torch.Tensor

sample()→ None

forward(x: torch.Tensor)→ torch.Tensor
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

training: bool
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tianshou.utils.net.discrete.sample_noise(model: torch.nn.modules.module.Module) →
bool

Sample the random noises of NoisyLinear modules in the model.

Parameters model – a PyTorch module which may have NoisyLinear submodules.

Returns True if model has at least one NoisyLinear submodule; otherwise, False.

Continuous

class tianshou.utils.net.continuous.Actor(preprocess_net:
torch.nn.modules.module.Module, ac-
tion_shape: Sequence[int], hidden_sizes:
Sequence[int] = (), max_action: float = 1.0,
device: Union[str, int, torch.device] = 'cpu',
preprocess_net_output_dim: Optional[int] =
None)

Bases: torch.nn.modules.module.Module

Simple actor network. Will create an actor operated in continuous action space with structure of preprocess_net
—> action_shape.

Parameters

• preprocess_net – a self-defined preprocess_net which output a flattened hidden state.

• action_shape – a sequence of int for the shape of action.

• hidden_sizes – a sequence of int for constructing the MLP after preprocess_net. De-
fault to empty sequence (where the MLP now contains only a single linear layer).

• max_action (float) – the scale for the final action logits. Default to 1.

• preprocess_net_output_dim (int) – the output dimension of preprocess_net.

For advanced usage (how to customize the network), please refer to Build the Network.

See also:

Please refer to Net as an instance of how preprocess_net is suggested to be defined.

forward(s: Union[numpy.ndarray, torch.Tensor], state: Optional[Any] = None, info: Dict[str, Any] =
{})→ Tuple[torch.Tensor, Any]

Mapping: s -> logits -> action.

training: bool

class tianshou.utils.net.continuous.Critic(preprocess_net:
torch.nn.modules.module.Module, hid-
den_sizes: Sequence[int] = (), device:
Union[str, int, torch.device] = 'cpu', pre-
process_net_output_dim: Optional[int] =
None)

Bases: torch.nn.modules.module.Module

Simple critic network. Will create an actor operated in continuous action space with structure of preprocess_net
—> 1(q value).

Parameters

• preprocess_net – a self-defined preprocess_net which output a flattened hidden state.

• hidden_sizes – a sequence of int for constructing the MLP after preprocess_net. De-
fault to empty sequence (where the MLP now contains only a single linear layer).
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• preprocess_net_output_dim (int) – the output dimension of preprocess_net.

For advanced usage (how to customize the network), please refer to Build the Network.

See also:

Please refer to Net as an instance of how preprocess_net is suggested to be defined.

forward(s: Union[numpy.ndarray, torch.Tensor], a: Optional[Union[numpy.ndarray, torch.Tensor]] =
None, info: Dict[str, Any] = {})→ torch.Tensor

Mapping: (s, a) -> logits -> Q(s, a).

training: bool

class tianshou.utils.net.continuous.ActorProb(preprocess_net:
torch.nn.modules.module.Module, ac-
tion_shape: Sequence[int], hidden_sizes:
Sequence[int] = (), max_action: float =
1.0, device: Union[str, int, torch.device]
= 'cpu', unbounded: bool = False,
conditioned_sigma: bool = False, pre-
process_net_output_dim: Optional[int] =
None)

Bases: torch.nn.modules.module.Module

Simple actor network (output with a Gauss distribution).

Parameters

• preprocess_net – a self-defined preprocess_net which output a flattened hidden state.

• action_shape – a sequence of int for the shape of action.

• hidden_sizes – a sequence of int for constructing the MLP after preprocess_net. De-
fault to empty sequence (where the MLP now contains only a single linear layer).

• max_action (float) – the scale for the final action logits. Default to 1.

• unbounded (bool) – whether to apply tanh activation on final logits. Default to False.

• conditioned_sigma (bool) – True when sigma is calculated from the input, False
when sigma is an independent parameter. Default to False.

• preprocess_net_output_dim (int) – the output dimension of preprocess_net.

For advanced usage (how to customize the network), please refer to Build the Network.

See also:

Please refer to Net as an instance of how preprocess_net is suggested to be defined.

forward(s: Union[numpy.ndarray, torch.Tensor], state: Optional[Any] = None, info: Dict[str, Any] =
{})→ Tuple[Tuple[torch.Tensor, torch.Tensor], Any]

Mapping: s -> logits -> (mu, sigma).

training: bool
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class tianshou.utils.net.continuous.RecurrentActorProb(layer_num: int, state_shape:
Sequence[int], ac-
tion_shape: Sequence[int],
hidden_layer_size: int =
128, max_action: float
= 1.0, device: Union[str,
int, torch.device] = 'cpu',
unbounded: bool = False,
conditioned_sigma: bool =
False)

Bases: torch.nn.modules.module.Module

Recurrent version of ActorProb.

For advanced usage (how to customize the network), please refer to Build the Network.

forward(s: Union[numpy.ndarray, torch.Tensor], state: Optional[Dict[str, torch.Tensor]] = None, info:
Dict[str, Any] = {})→ Tuple[Tuple[torch.Tensor, torch.Tensor], Dict[str, torch.Tensor]]

Almost the same as Recurrent.

training: bool

class tianshou.utils.net.continuous.RecurrentCritic(layer_num: int, state_shape:
Sequence[int], action_shape:
Sequence[int] = [0], device:
Union[str, int, torch.device] =
'cpu', hidden_layer_size: int =
128)

Bases: torch.nn.modules.module.Module

Recurrent version of Critic.

For advanced usage (how to customize the network), please refer to Build the Network.

forward(s: Union[numpy.ndarray, torch.Tensor], a: Optional[Union[numpy.ndarray, torch.Tensor]] =
None, info: Dict[str, Any] = {})→ torch.Tensor

Almost the same as Recurrent.

training: bool

1.14 Contributing to Tianshou

1.14.1 Install Develop Version

To install Tianshou in an “editable” mode, run

$ pip install -e ".[dev]"

in the main directory. This installation is removable by

$ python setup.py develop --uninstall
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1.14.2 PEP8 Code Style Check and Code Formatter

We follow PEP8 python code style with flake8. To check, in the main directory, run:

$ make lint

We use isort and yapf to format all codes. To format, in the main directory, run:

$ make format

To check if formatted correctly, in the main directory, run:

$ make check-codestyle

1.14.3 Type Check

We use mypy to check the type annotations. To check, in the main directory, run:

$ make mypy

1.14.4 Test Locally

This command will run automatic tests in the main directory

$ make pytest

1.14.5 Test by GitHub Actions

1. Click the Actions button in your own repo:

2. Click the green button:
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3. You will see Actions Enabled. on the top of html page.

4. When you push a new commit to your own repo (e.g. git push), it will automatically run the test in this page:

1.14.6 Documentation

Documentations are written under the docs/ directory as ReStructuredText (.rst) files. index.rst is the main
page. A Tutorial on ReStructuredText can be found here.

API References are automatically generated by Sphinx according to the outlines under docs/api/ and should be
modified when any code changes.

To compile documentation into webpage, run

$ make doc

The generated webpage is in docs/_build and can be viewed with browser (http://0.0.0.0:8000/).

Chinese documentation is in https://tianshou.readthedocs.io/zh/latest/.

1.14.7 Documentation Generation Test

We have the following three documentation tests:

1. pydocstyle: test all docstring under tianshou/;

2. doc8: test ReStructuredText format;

3. sphinx test: test if there is any error/warning when generating front-end html documentation.

To check, in the main directory, run:

$ make check-docstyle
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1.15 Contributor

We always welcome contributions to help make Tianshou better. Below are an incomplete list of our contributors (find
more on this page).

• Jiayi Weng (Trinkle23897)

• Alexis Duburcq (duburcqa)

• Kaichao You (youkaichao)

• Huayu Chen (ChenDRAG)
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