Source code for tianshou.policy.imitation.discrete_crr

from copy import deepcopy
from dataclasses import dataclass
from typing import Any, Literal, TypeVar

import gymnasium as gym
import torch
import torch.nn.functional as F
from torch.distributions import Categorical

from tianshou.data import to_torch, to_torch_as
from tianshou.data.types import RolloutBatchProtocol
from tianshou.policy.base import TLearningRateScheduler
from tianshou.policy.modelfree.pg import PGPolicy, PGTrainingStats
from tianshou.utils.net.discrete import Actor, Critic


[docs] @dataclass class DiscreteCRRTrainingStats(PGTrainingStats): actor_loss: float critic_loss: float cql_loss: float
TDiscreteCRRTrainingStats = TypeVar("TDiscreteCRRTrainingStats", bound=DiscreteCRRTrainingStats)
[docs] class DiscreteCRRPolicy(PGPolicy[TDiscreteCRRTrainingStats]): r"""Implementation of discrete Critic Regularized Regression. arXiv:2006.15134. :param actor: the actor network following the rules: If `self.action_type == "discrete"`: (`s_B` ->`action_values_BA`). If `self.action_type == "continuous"`: (`s_B` -> `dist_input_BD`). :param critic: the action-value critic (i.e., Q function) network. (s -> Q(s, \*)) :param optim: a torch.optim for optimizing the model. :param discount_factor: in [0, 1]. :param str policy_improvement_mode: type of the weight function f. Possible values: "binary"/"exp"/"all". :param ratio_upper_bound: when policy_improvement_mode is "exp", the value of the exp function is upper-bounded by this parameter. :param beta: when policy_improvement_mode is "exp", this is the denominator of the exp function. :param min_q_weight: weight for CQL loss/regularizer. Default to 10. :param target_update_freq: the target network update frequency (0 if you do not use the target network). :param reward_normalization: if True, will normalize the *returns* by subtracting the running mean and dividing by the running standard deviation. Can be detrimental to performance! See TODO in process_fn. :param observation_space: Env's observation space. :param lr_scheduler: if not None, will be called in `policy.update()`. .. seealso:: Please refer to :class:`~tianshou.policy.PGPolicy` for more detailed explanation. """ def __init__( self, *, actor: torch.nn.Module | Actor, critic: torch.nn.Module | Critic, optim: torch.optim.Optimizer, action_space: gym.spaces.Discrete, discount_factor: float = 0.99, policy_improvement_mode: Literal["exp", "binary", "all"] = "exp", ratio_upper_bound: float = 20.0, beta: float = 1.0, min_q_weight: float = 10.0, target_update_freq: int = 0, reward_normalization: bool = False, observation_space: gym.Space | None = None, lr_scheduler: TLearningRateScheduler | None = None, ) -> None: super().__init__( actor=actor, optim=optim, action_space=action_space, dist_fn=lambda x: Categorical(logits=x), discount_factor=discount_factor, reward_normalization=reward_normalization, observation_space=observation_space, action_scaling=False, action_bound_method=None, lr_scheduler=lr_scheduler, ) self.critic = critic self._target = target_update_freq > 0 self._freq = target_update_freq self._iter = 0 if self._target: self.actor_old = deepcopy(self.actor) self.actor_old.eval() self.critic_old = deepcopy(self.critic) self.critic_old.eval() else: self.actor_old = self.actor self.critic_old = self.critic self._policy_improvement_mode = policy_improvement_mode self._ratio_upper_bound = ratio_upper_bound self._beta = beta self._min_q_weight = min_q_weight
[docs] def sync_weight(self) -> None: self.actor_old.load_state_dict(self.actor.state_dict()) self.critic_old.load_state_dict(self.critic.state_dict())
[docs] def learn( # type: ignore self, batch: RolloutBatchProtocol, *args: Any, **kwargs: Any, ) -> TDiscreteCRRTrainingStats: if self._target and self._iter % self._freq == 0: self.sync_weight() self.optim.zero_grad() q_t = self.critic(batch.obs) act = to_torch(batch.act, dtype=torch.long, device=q_t.device) qa_t = q_t.gather(1, act.unsqueeze(1)) # Critic loss with torch.no_grad(): target_a_t, _ = self.actor_old(batch.obs_next) target_m = Categorical(logits=target_a_t) q_t_target = self.critic_old(batch.obs_next) rew = to_torch_as(batch.rew, q_t_target) expected_target_q = (q_t_target * target_m.probs).sum(-1, keepdim=True) expected_target_q[batch.done > 0] = 0.0 target = rew.unsqueeze(1) + self.gamma * expected_target_q critic_loss = 0.5 * F.mse_loss(qa_t, target) # Actor loss act_target, _ = self.actor(batch.obs) dist = Categorical(logits=act_target) expected_policy_q = (q_t * dist.probs).sum(-1, keepdim=True) advantage = qa_t - expected_policy_q if self._policy_improvement_mode == "binary": actor_loss_coef = (advantage > 0).float() elif self._policy_improvement_mode == "exp": actor_loss_coef = (advantage / self._beta).exp().clamp(0, self._ratio_upper_bound) else: actor_loss_coef = 1.0 # effectively behavior cloning actor_loss = (-dist.log_prob(act) * actor_loss_coef).mean() # CQL loss/regularizer min_q_loss = (q_t.logsumexp(1) - qa_t).mean() loss = actor_loss + critic_loss + self._min_q_weight * min_q_loss loss.backward() self.optim.step() self._iter += 1 return DiscreteCRRTrainingStats( # type: ignore[return-value] loss=loss.item(), actor_loss=actor_loss.item(), critic_loss=critic_loss.item(), cql_loss=min_q_loss.item(), )