Source code for tianshou.policy.modelfree.a2c

from dataclasses import dataclass
from typing import Any, Generic, Literal, TypeVar, cast

import gymnasium as gym
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn

from tianshou.data import ReplayBuffer, SequenceSummaryStats, to_torch_as
from tianshou.data.types import BatchWithAdvantagesProtocol, RolloutBatchProtocol
from tianshou.policy import PGPolicy
from tianshou.policy.base import TLearningRateScheduler, TrainingStats
from tianshou.policy.modelfree.pg import TDistFnDiscrOrCont
from tianshou.utils.net.common import ActorCritic
from tianshou.utils.net.continuous import ActorProb, Critic
from tianshou.utils.net.discrete import Actor as DiscreteActor
from tianshou.utils.net.discrete import Critic as DiscreteCritic


[docs] @dataclass(kw_only=True) class A2CTrainingStats(TrainingStats): loss: SequenceSummaryStats actor_loss: SequenceSummaryStats vf_loss: SequenceSummaryStats ent_loss: SequenceSummaryStats
TA2CTrainingStats = TypeVar("TA2CTrainingStats", bound=A2CTrainingStats) # TODO: the type ignore here is needed b/c the hierarchy is actually broken! Should reconsider the inheritance structure.
[docs] class A2CPolicy(PGPolicy[TA2CTrainingStats], Generic[TA2CTrainingStats]): # type: ignore[type-var] """Implementation of Synchronous Advantage Actor-Critic. arXiv:1602.01783. :param actor: the actor network following the rules: If `self.action_type == "discrete"`: (`s_B` ->`action_values_BA`). If `self.action_type == "continuous"`: (`s_B` -> `dist_input_BD`). :param critic: the critic network. (s -> V(s)) :param optim: the optimizer for actor and critic network. :param dist_fn: distribution class for computing the action. :param action_space: env's action space :param vf_coef: weight for value loss. :param ent_coef: weight for entropy loss. :param max_grad_norm: clipping gradients in back propagation. :param gae_lambda: in [0, 1], param for Generalized Advantage Estimation. :param max_batchsize: the maximum size of the batch when computing GAE. :param discount_factor: in [0, 1]. :param reward_normalization: normalize estimated values to have std close to 1. :param deterministic_eval: if True, use deterministic evaluation. :param observation_space: the space of the observation. :param action_scaling: if True, scale the action from [-1, 1] to the range of action_space. Only used if the action_space is continuous. :param action_bound_method: method to bound action to range [-1, 1]. Only used if the action_space is continuous. :param lr_scheduler: if not None, will be called in `policy.update()`. .. seealso:: Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed explanation. """ def __init__( self, *, actor: torch.nn.Module | ActorProb | DiscreteActor, critic: torch.nn.Module | Critic | DiscreteCritic, optim: torch.optim.Optimizer, dist_fn: TDistFnDiscrOrCont, action_space: gym.Space, vf_coef: float = 0.5, ent_coef: float = 0.01, max_grad_norm: float | None = None, gae_lambda: float = 0.95, max_batchsize: int = 256, discount_factor: float = 0.99, # TODO: rename to return_normalization? reward_normalization: bool = False, deterministic_eval: bool = False, observation_space: gym.Space | None = None, action_scaling: bool = True, action_bound_method: Literal["clip", "tanh"] | None = "clip", lr_scheduler: TLearningRateScheduler | None = None, ) -> None: super().__init__( actor=actor, optim=optim, dist_fn=dist_fn, action_space=action_space, discount_factor=discount_factor, reward_normalization=reward_normalization, deterministic_eval=deterministic_eval, observation_space=observation_space, action_scaling=action_scaling, action_bound_method=action_bound_method, lr_scheduler=lr_scheduler, ) self.critic = critic assert 0.0 <= gae_lambda <= 1.0, f"GAE lambda should be in [0, 1] but got: {gae_lambda}" self.gae_lambda = gae_lambda self.vf_coef = vf_coef self.ent_coef = ent_coef self.max_grad_norm = max_grad_norm self.max_batchsize = max_batchsize self._actor_critic = ActorCritic(self.actor, self.critic)
[docs] def process_fn( self, batch: RolloutBatchProtocol, buffer: ReplayBuffer, indices: np.ndarray, ) -> BatchWithAdvantagesProtocol: batch = self._compute_returns(batch, buffer, indices) batch.act = to_torch_as(batch.act, batch.v_s) return batch
def _compute_returns( self, batch: RolloutBatchProtocol, buffer: ReplayBuffer, indices: np.ndarray, ) -> BatchWithAdvantagesProtocol: v_s, v_s_ = [], [] with torch.no_grad(): for minibatch in batch.split(self.max_batchsize, shuffle=False, merge_last=True): v_s.append(self.critic(minibatch.obs)) v_s_.append(self.critic(minibatch.obs_next)) batch.v_s = torch.cat(v_s, dim=0).flatten() # old value v_s = batch.v_s.cpu().numpy() v_s_ = torch.cat(v_s_, dim=0).flatten().cpu().numpy() # when normalizing values, we do not minus self.ret_rms.mean to be numerically # consistent with OPENAI baselines' value normalization pipeline. Empirical # study also shows that "minus mean" will harm performances a tiny little bit # due to unknown reasons (on Mujoco envs, not confident, though). # TODO: see todo in PGPolicy.process_fn if self.rew_norm: # unnormalize v_s & v_s_ v_s = v_s * np.sqrt(self.ret_rms.var + self._eps) v_s_ = v_s_ * np.sqrt(self.ret_rms.var + self._eps) unnormalized_returns, advantages = self.compute_episodic_return( batch, buffer, indices, v_s_, v_s, gamma=self.gamma, gae_lambda=self.gae_lambda, ) if self.rew_norm: batch.returns = unnormalized_returns / np.sqrt(self.ret_rms.var + self._eps) self.ret_rms.update(unnormalized_returns) else: batch.returns = unnormalized_returns batch.returns = to_torch_as(batch.returns, batch.v_s) batch.adv = to_torch_as(advantages, batch.v_s) return cast(BatchWithAdvantagesProtocol, batch) # TODO: mypy complains b/c signature is different from superclass, although # it's compatible. Can this be fixed?
[docs] def learn( # type: ignore self, batch: RolloutBatchProtocol, batch_size: int | None, repeat: int, *args: Any, **kwargs: Any, ) -> TA2CTrainingStats: losses, actor_losses, vf_losses, ent_losses = [], [], [], [] split_batch_size = batch_size or -1 for _ in range(repeat): for minibatch in batch.split(split_batch_size, merge_last=True): # calculate loss for actor dist = self(minibatch).dist log_prob = dist.log_prob(minibatch.act) log_prob = log_prob.reshape(len(minibatch.adv), -1).transpose(0, 1) actor_loss = -(log_prob * minibatch.adv).mean() # calculate loss for critic value = self.critic(minibatch.obs).flatten() vf_loss = F.mse_loss(minibatch.returns, value) # calculate regularization and overall loss ent_loss = dist.entropy().mean() loss = actor_loss + self.vf_coef * vf_loss - self.ent_coef * ent_loss self.optim.zero_grad() loss.backward() if self.max_grad_norm: # clip large gradient nn.utils.clip_grad_norm_( self._actor_critic.parameters(), max_norm=self.max_grad_norm, ) self.optim.step() actor_losses.append(actor_loss.item()) vf_losses.append(vf_loss.item()) ent_losses.append(ent_loss.item()) losses.append(loss.item()) loss_summary_stat = SequenceSummaryStats.from_sequence(losses) actor_loss_summary_stat = SequenceSummaryStats.from_sequence(actor_losses) vf_loss_summary_stat = SequenceSummaryStats.from_sequence(vf_losses) ent_loss_summary_stat = SequenceSummaryStats.from_sequence(ent_losses) return A2CTrainingStats( # type: ignore[return-value] loss=loss_summary_stat, actor_loss=actor_loss_summary_stat, vf_loss=vf_loss_summary_stat, ent_loss=ent_loss_summary_stat, )