Source code for tianshou.policy.modelfree.dqn

from copy import deepcopy
from dataclasses import dataclass
from typing import Any, Generic, Literal, Self, TypeVar, cast

import gymnasium as gym
import numpy as np
import torch

from tianshou.data import Batch, ReplayBuffer, to_numpy, to_torch_as
from tianshou.data.batch import BatchProtocol
from tianshou.data.types import (
    ActBatchProtocol,
    BatchWithReturnsProtocol,
    ModelOutputBatchProtocol,
    ObsBatchProtocol,
    RolloutBatchProtocol,
)
from tianshou.policy import BasePolicy
from tianshou.policy.base import TLearningRateScheduler, TrainingStats
from tianshou.utils.net.common import Net


[docs] @dataclass(kw_only=True) class DQNTrainingStats(TrainingStats): loss: float
TDQNTrainingStats = TypeVar("TDQNTrainingStats", bound=DQNTrainingStats)
[docs] class DQNPolicy(BasePolicy[TDQNTrainingStats], Generic[TDQNTrainingStats]): """Implementation of Deep Q Network. arXiv:1312.5602. Implementation of Double Q-Learning. arXiv:1509.06461. Implementation of Dueling DQN. arXiv:1511.06581 (the dueling DQN is implemented in the network side, not here). :param model: a model following the rules (s -> action_values_BA) :param optim: a torch.optim for optimizing the model. :param discount_factor: in [0, 1]. :param estimation_step: the number of steps to look ahead. :param target_update_freq: the target network update frequency (0 if you do not use the target network). :param reward_normalization: normalize the **returns** to Normal(0, 1). TODO: rename to return_normalization? :param is_double: use double dqn. :param clip_loss_grad: clip the gradient of the loss in accordance with nature14236; this amounts to using the Huber loss instead of the MSE loss. :param observation_space: Env's observation space. :param lr_scheduler: if not None, will be called in `policy.update()`. .. seealso:: Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed explanation. """ def __init__( self, *, model: torch.nn.Module | Net, optim: torch.optim.Optimizer, # TODO: type violates Liskov substitution principle action_space: gym.spaces.Discrete, discount_factor: float = 0.99, estimation_step: int = 1, target_update_freq: int = 0, reward_normalization: bool = False, is_double: bool = True, clip_loss_grad: bool = False, observation_space: gym.Space | None = None, lr_scheduler: TLearningRateScheduler | None = None, ) -> None: super().__init__( action_space=action_space, observation_space=observation_space, action_scaling=False, action_bound_method=None, lr_scheduler=lr_scheduler, ) self.model = model self.optim = optim self.eps = 0.0 assert ( 0.0 <= discount_factor <= 1.0 ), f"discount factor should be in [0, 1] but got: {discount_factor}" self.gamma = discount_factor assert ( estimation_step > 0 ), f"estimation_step should be greater than 0 but got: {estimation_step}" self.n_step = estimation_step self._target = target_update_freq > 0 self.freq = target_update_freq self._iter = 0 if self._target: self.model_old = deepcopy(self.model) self.model_old.eval() self.rew_norm = reward_normalization self.is_double = is_double self.clip_loss_grad = clip_loss_grad # TODO: set in forward, fix this! self.max_action_num: int | None = None
[docs] def set_eps(self, eps: float) -> None: """Set the eps for epsilon-greedy exploration.""" self.eps = eps
[docs] def train(self, mode: bool = True) -> Self: """Set the module in training mode, except for the target network.""" self.training = mode self.model.train(mode) return self
[docs] def sync_weight(self) -> None: """Synchronize the weight for the target network.""" self.model_old.load_state_dict(self.model.state_dict())
def _target_q(self, buffer: ReplayBuffer, indices: np.ndarray) -> torch.Tensor: obs_next_batch = Batch( obs=buffer[indices].obs_next, info=[None] * len(indices), ) # obs_next: s_{t+n} result = self(obs_next_batch) if self._target: # target_Q = Q_old(s_, argmax(Q_new(s_, *))) target_q = self(obs_next_batch, model="model_old").logits else: target_q = result.logits if self.is_double: return target_q[np.arange(len(result.act)), result.act] # Nature DQN, over estimate return target_q.max(dim=1)[0]
[docs] def process_fn( self, batch: RolloutBatchProtocol, buffer: ReplayBuffer, indices: np.ndarray, ) -> BatchWithReturnsProtocol: """Compute the n-step return for Q-learning targets. More details can be found at :meth:`~tianshou.policy.BasePolicy.compute_nstep_return`. """ return self.compute_nstep_return( batch=batch, buffer=buffer, indices=indices, target_q_fn=self._target_q, gamma=self.gamma, n_step=self.n_step, rew_norm=self.rew_norm, )
[docs] def compute_q_value(self, logits: torch.Tensor, mask: np.ndarray | None) -> torch.Tensor: """Compute the q value based on the network's raw output and action mask.""" if mask is not None: # the masked q value should be smaller than logits.min() min_value = logits.min() - logits.max() - 1.0 logits = logits + to_torch_as(1 - mask, logits) * min_value return logits
[docs] def forward( self, batch: ObsBatchProtocol, state: dict | BatchProtocol | np.ndarray | None = None, model: Literal["model", "model_old"] = "model", **kwargs: Any, ) -> ModelOutputBatchProtocol: """Compute action over the given batch data. If you need to mask the action, please add a "mask" into batch.obs, for example, if we have an environment that has "0/1/2" three actions: :: batch == Batch( obs=Batch( obs="original obs, with batch_size=1 for demonstration", mask=np.array([[False, True, False]]), # action 1 is available # action 0 and 2 are unavailable ), ... ) :return: A :class:`~tianshou.data.Batch` which has 3 keys: * ``act`` the action. * ``logits`` the network's raw output. * ``state`` the hidden state. .. seealso:: Please refer to :meth:`~tianshou.policy.BasePolicy.forward` for more detailed explanation. """ model = getattr(self, model) obs = batch.obs # TODO: this is convoluted! See also other places where this is done. obs_next = obs.obs if hasattr(obs, "obs") else obs action_values_BA, hidden_BH = model(obs_next, state=state, info=batch.info) q = self.compute_q_value(action_values_BA, getattr(obs, "mask", None)) if self.max_action_num is None: self.max_action_num = q.shape[1] act_B = to_numpy(q.argmax(dim=1)) result = Batch(logits=action_values_BA, act=act_B, state=hidden_BH) return cast(ModelOutputBatchProtocol, result)
[docs] def learn(self, batch: RolloutBatchProtocol, *args: Any, **kwargs: Any) -> TDQNTrainingStats: if self._target and self._iter % self.freq == 0: self.sync_weight() self.optim.zero_grad() weight = batch.pop("weight", 1.0) q = self(batch).logits q = q[np.arange(len(q)), batch.act] returns = to_torch_as(batch.returns.flatten(), q) td_error = returns - q if self.clip_loss_grad: y = q.reshape(-1, 1) t = returns.reshape(-1, 1) loss = torch.nn.functional.huber_loss(y, t, reduction="mean") else: loss = (td_error.pow(2) * weight).mean() batch.weight = td_error # prio-buffer loss.backward() self.optim.step() self._iter += 1 return DQNTrainingStats(loss=loss.item()) # type: ignore[return-value]
_TArrOrActBatch = TypeVar("_TArrOrActBatch", bound="np.ndarray | ActBatchProtocol")
[docs] def exploration_noise( self, act: _TArrOrActBatch, batch: ObsBatchProtocol, ) -> _TArrOrActBatch: if isinstance(act, np.ndarray) and not np.isclose(self.eps, 0.0): bsz = len(act) rand_mask = np.random.rand(bsz) < self.eps assert ( self.max_action_num is not None ), "Can't call this method before max_action_num was set in first forward" q = np.random.rand(bsz, self.max_action_num) # [0, 1] if hasattr(batch.obs, "mask"): q += batch.obs.mask rand_act = q.argmax(axis=1) act[rand_mask] = rand_act[rand_mask] return act