Source code for tianshou.env.venv_wrappers

from typing import Any

import numpy as np
import torch

from tianshou.env.utils import gym_new_venv_step_type
from tianshou.env.venvs import GYM_RESERVED_KEYS, BaseVectorEnv
from tianshou.utils import RunningMeanStd


[docs] class VectorEnvWrapper(BaseVectorEnv): """Base class for vectorized environments wrapper.""" # Note: No super call because this is a wrapper with overridden __getattribute__ # It's not a "true" subclass of BaseVectorEnv but it does extend its interface, so # it can be used as a drop-in replacement # noinspection PyMissingConstructor def __init__(self, venv: BaseVectorEnv) -> None: self.venv = venv self.is_async = venv.is_async def __len__(self) -> int: return len(self.venv) def __getattribute__(self, key: str) -> Any: if key in GYM_RESERVED_KEYS: # reserved keys in gym.Env return getattr(self.venv, key) return super().__getattribute__(key)
[docs] def get_env_attr( self, key: str, id: int | list[int] | np.ndarray | None = None, ) -> list[Any]: return self.venv.get_env_attr(key, id)
[docs] def set_env_attr( self, key: str, value: Any, id: int | list[int] | np.ndarray | None = None, ) -> None: return self.venv.set_env_attr(key, value, id)
[docs] def reset( self, id: int | list[int] | np.ndarray | None = None, **kwargs: Any, ) -> tuple[np.ndarray, dict | list[dict]]: return self.venv.reset(id, **kwargs)
[docs] def step( self, action: np.ndarray | torch.Tensor, id: int | list[int] | np.ndarray | None = None, ) -> gym_new_venv_step_type: return self.venv.step(action, id)
[docs] def seed(self, seed: int | list[int] | None = None) -> list[list[int] | None]: return self.venv.seed(seed)
[docs] def render(self, **kwargs: Any) -> list[Any]: return self.venv.render(**kwargs)
[docs] def close(self) -> None: self.venv.close()
[docs] class VectorEnvNormObs(VectorEnvWrapper): """An observation normalization wrapper for vectorized environments. :param update_obs_rms: whether to update obs_rms. Default to True. """ def __init__(self, venv: BaseVectorEnv, update_obs_rms: bool = True) -> None: super().__init__(venv) # initialize observation running mean/std self.update_obs_rms = update_obs_rms self.obs_rms = RunningMeanStd()
[docs] def reset( self, id: int | list[int] | np.ndarray | None = None, **kwargs: Any, ) -> tuple[np.ndarray, dict | list[dict]]: obs, info = self.venv.reset(id, **kwargs) if isinstance(obs, tuple): # type: ignore raise TypeError( "Tuple observation space is not supported. ", "Please change it to array or dict space", ) if self.obs_rms and self.update_obs_rms: self.obs_rms.update(obs) obs = self._norm_obs(obs) return obs, info
[docs] def step( self, action: np.ndarray | torch.Tensor, id: int | list[int] | np.ndarray | None = None, ) -> gym_new_venv_step_type: step_results = self.venv.step(action, id) if self.obs_rms and self.update_obs_rms: self.obs_rms.update(step_results[0]) return (self._norm_obs(step_results[0]), *step_results[1:])
def _norm_obs(self, obs: np.ndarray) -> np.ndarray: if self.obs_rms: return self.obs_rms.norm(obs) # type: ignore return obs
[docs] def set_obs_rms(self, obs_rms: RunningMeanStd) -> None: """Set with given observation running mean/std.""" self.obs_rms = obs_rms
[docs] def get_obs_rms(self) -> RunningMeanStd: """Return observation running mean/std.""" return self.obs_rms