Source code for tianshou.env.venv_wrappers
from typing import Any
import numpy as np
import torch
from tianshou.env.utils import gym_new_venv_step_type
from tianshou.env.venvs import GYM_RESERVED_KEYS, BaseVectorEnv
from tianshou.utils import RunningMeanStd
[docs]
class VectorEnvWrapper(BaseVectorEnv):
"""Base class for vectorized environments wrapper."""
# Note: No super call because this is a wrapper with overridden __getattribute__
# It's not a "true" subclass of BaseVectorEnv but it does extend its interface, so
# it can be used as a drop-in replacement
# noinspection PyMissingConstructor
def __init__(self, venv: BaseVectorEnv) -> None:
self.venv = venv
self.is_async = venv.is_async
def __len__(self) -> int:
return len(self.venv)
def __getattribute__(self, key: str) -> Any:
if key in GYM_RESERVED_KEYS: # reserved keys in gym.Env
return getattr(self.venv, key)
return super().__getattribute__(key)
[docs]
def get_env_attr(
self,
key: str,
id: int | list[int] | np.ndarray | None = None,
) -> list[Any]:
return self.venv.get_env_attr(key, id)
[docs]
def set_env_attr(
self,
key: str,
value: Any,
id: int | list[int] | np.ndarray | None = None,
) -> None:
return self.venv.set_env_attr(key, value, id)
[docs]
def reset(
self,
id: int | list[int] | np.ndarray | None = None,
**kwargs: Any,
) -> tuple[np.ndarray, dict | list[dict]]:
return self.venv.reset(id, **kwargs)
[docs]
def step(
self,
action: np.ndarray | torch.Tensor,
id: int | list[int] | np.ndarray | None = None,
) -> gym_new_venv_step_type:
return self.venv.step(action, id)
[docs]
def seed(self, seed: int | list[int] | None = None) -> list[list[int] | None]:
return self.venv.seed(seed)
[docs]
def render(self, **kwargs: Any) -> list[Any]:
return self.venv.render(**kwargs)
[docs]
def close(self) -> None:
self.venv.close()
[docs]
class VectorEnvNormObs(VectorEnvWrapper):
"""An observation normalization wrapper for vectorized environments.
:param update_obs_rms: whether to update obs_rms. Default to True.
"""
def __init__(self, venv: BaseVectorEnv, update_obs_rms: bool = True) -> None:
super().__init__(venv)
# initialize observation running mean/std
self.update_obs_rms = update_obs_rms
self.obs_rms = RunningMeanStd()
[docs]
def reset(
self,
id: int | list[int] | np.ndarray | None = None,
**kwargs: Any,
) -> tuple[np.ndarray, dict | list[dict]]:
obs, info = self.venv.reset(id, **kwargs)
if isinstance(obs, tuple): # type: ignore
raise TypeError(
"Tuple observation space is not supported. ",
"Please change it to array or dict space",
)
if self.obs_rms and self.update_obs_rms:
self.obs_rms.update(obs)
obs = self._norm_obs(obs)
return obs, info
[docs]
def step(
self,
action: np.ndarray | torch.Tensor,
id: int | list[int] | np.ndarray | None = None,
) -> gym_new_venv_step_type:
step_results = self.venv.step(action, id)
if self.obs_rms and self.update_obs_rms:
self.obs_rms.update(step_results[0])
return (self._norm_obs(step_results[0]), *step_results[1:])
def _norm_obs(self, obs: np.ndarray) -> np.ndarray:
if self.obs_rms:
return self.obs_rms.norm(obs) # type: ignore
return obs
[docs]
def set_obs_rms(self, obs_rms: RunningMeanStd) -> None:
"""Set with given observation running mean/std."""
self.obs_rms = obs_rms
[docs]
def get_obs_rms(self) -> RunningMeanStd:
"""Return observation running mean/std."""
return self.obs_rms