import os
import pickle
from abc import abstractmethod
from collections.abc import Sequence
from dataclasses import dataclass
from pprint import pformat
from typing import Self
import numpy as np
import torch
from tianshou.data import Collector, InfoStats
from tianshou.env import BaseVectorEnv
from tianshou.highlevel.agent import (
A2CAgentFactory,
AgentFactory,
DDPGAgentFactory,
DiscreteSACAgentFactory,
DQNAgentFactory,
IQNAgentFactory,
NPGAgentFactory,
PGAgentFactory,
PPOAgentFactory,
REDQAgentFactory,
SACAgentFactory,
TD3AgentFactory,
TRPOAgentFactory,
)
from tianshou.highlevel.config import SamplingConfig
from tianshou.highlevel.env import EnvFactory
from tianshou.highlevel.logger import LoggerFactory, LoggerFactoryDefault, TLogger
from tianshou.highlevel.module.actor import (
ActorFactory,
ActorFactoryDefault,
ActorFactoryTransientStorageDecorator,
ActorFuture,
ActorFutureProviderProtocol,
ContinuousActorType,
IntermediateModuleFactoryFromActorFactory,
)
from tianshou.highlevel.module.core import (
TDevice,
)
from tianshou.highlevel.module.critic import (
CriticEnsembleFactory,
CriticEnsembleFactoryDefault,
CriticFactory,
CriticFactoryDefault,
CriticFactoryReuseActor,
)
from tianshou.highlevel.module.intermediate import IntermediateModuleFactory
from tianshou.highlevel.module.special import ImplicitQuantileNetworkFactory
from tianshou.highlevel.optim import OptimizerFactory, OptimizerFactoryAdam
from tianshou.highlevel.params.policy_params import (
A2CParams,
DDPGParams,
DiscreteSACParams,
DQNParams,
IQNParams,
NPGParams,
PGParams,
PPOParams,
REDQParams,
SACParams,
TD3Params,
TRPOParams,
)
from tianshou.highlevel.params.policy_wrapper import PolicyWrapperFactory
from tianshou.highlevel.persistence import (
PersistenceGroup,
PolicyPersistence,
)
from tianshou.highlevel.trainer import (
EpochStopCallback,
EpochTestCallback,
EpochTrainCallback,
TrainerCallbacks,
)
from tianshou.highlevel.world import World
from tianshou.policy import BasePolicy
from tianshou.utils import LazyLogger, logging
from tianshou.utils.logging import datetime_tag
from tianshou.utils.net.common import ModuleType
from tianshou.utils.string import ToStringMixin
log = logging.getLogger(__name__)
[docs]
@dataclass
class ExperimentConfig:
"""Generic config for setting up the experiment, not RL or training specific."""
seed: int = 42
"""The random seed with which to initialize random number generators."""
device: TDevice = "cuda" if torch.cuda.is_available() else "cpu"
"""The torch device to use"""
policy_restore_directory: str | None = None
"""Directory from which to load the policy neural network parameters (persistence directory of a previous run)"""
train: bool = True
"""Whether to perform training"""
watch: bool = True
"""Whether to watch agent performance (after training)"""
watch_num_episodes: int = 10
"""Number of episodes for which to watch performance (if `watch` is enabled)"""
watch_render: float = 0.0
"""Milliseconds between rendered frames when watching agent performance (if `watch` is enabled)"""
persistence_base_dir: str = "log"
"""Base directory in which experiment data is to be stored. Every experiment run will create a subdirectory
in this directory based on the run's experiment name"""
persistence_enabled: bool = True
"""Whether persistence is enabled, allowing files to be stored"""
log_file_enabled: bool = True
"""Whether to write to a log file; has no effect if `persistence_enabled` is False.
Disable this if you have externally configured log file generation."""
policy_persistence_mode: PolicyPersistence.Mode = PolicyPersistence.Mode.POLICY
"""Controls the way in which the policy is persisted"""
[docs]
@dataclass
class ExperimentResult:
"""Contains the results of an experiment."""
world: World
"""contains all the essential instances of the experiment"""
trainer_result: InfoStats | None
"""dataclass of results as returned by the trainer (if any)"""
[docs]
class Experiment(ToStringMixin):
"""Represents a reinforcement learning experiment.
An experiment is composed only of configuration and factory objects, which themselves
should be designed to contain only configuration. Therefore, experiments can easily
be stored/pickled and later restored without any problems.
"""
LOG_FILENAME = "log.txt"
EXPERIMENT_PICKLE_FILENAME = "experiment.pkl"
def __init__(
self,
config: ExperimentConfig,
env_factory: EnvFactory,
agent_factory: AgentFactory,
sampling_config: SamplingConfig,
logger_factory: LoggerFactory | None = None,
):
if logger_factory is None:
logger_factory = LoggerFactoryDefault()
self.config = config
self.sampling_config = sampling_config
self.env_factory = env_factory
self.agent_factory = agent_factory
self.logger_factory = logger_factory
[docs]
@classmethod
def from_directory(cls, directory: str, restore_policy: bool = True) -> "Experiment":
"""Restores an experiment from a previously stored pickle.
:param directory: persistence directory of a previous run, in which a pickled experiment is found
:param restore_policy: whether the experiment shall be configured to restore the policy that was
persisted in the given directory
"""
with open(os.path.join(directory, cls.EXPERIMENT_PICKLE_FILENAME), "rb") as f:
experiment: Experiment = pickle.load(f)
if restore_policy:
experiment.config.policy_restore_directory = directory
return experiment
def _set_seed(self) -> None:
seed = self.config.seed
log.info(f"Setting random seed {seed}")
np.random.seed(seed)
torch.manual_seed(seed)
def _build_config_dict(self) -> dict:
return {"experiment": self.pprints()}
[docs]
def save(self, directory: str) -> None:
path = os.path.join(directory, self.EXPERIMENT_PICKLE_FILENAME)
log.info(
f"Saving serialized experiment in {path}; can be restored via Experiment.from_directory('{directory}')",
)
with open(path, "wb") as f:
pickle.dump(self, f)
[docs]
def run(
self,
experiment_name: str | None = None,
logger_run_id: str | None = None,
) -> ExperimentResult:
"""Run the experiment and return the results.
:param experiment_name: the experiment name, which corresponds to the directory (within the logging
directory) where all results associated with the experiment will be saved.
The name may contain path separators (i.e. `os.path.sep`, as used by `os.path.join`), in which case
a nested directory structure will be created.
If None, use a name containing the current date and time.
:param logger_run_id: Run identifier to use for logger initialization/resumption (applies when
using wandb, in particular).
:return:
"""
if experiment_name is None:
experiment_name = datetime_tag()
# initialize persistence directory
use_persistence = self.config.persistence_enabled
persistence_dir = os.path.join(self.config.persistence_base_dir, experiment_name)
if use_persistence:
os.makedirs(persistence_dir, exist_ok=True)
with logging.FileLoggerContext(
os.path.join(persistence_dir, self.LOG_FILENAME),
enabled=use_persistence and self.config.log_file_enabled,
):
# log initial information
log.info(f"Running experiment (name='{experiment_name}'):\n{self.pprints()}")
log.info(f"Working directory: {os.getcwd()}")
self._set_seed()
# create environments
envs = self.env_factory.create_envs(
self.sampling_config.num_train_envs,
self.sampling_config.num_test_envs,
create_watch_env=self.config.watch,
)
log.info(f"Created {envs}")
# initialize persistence
additional_persistence = PersistenceGroup(*envs.persistence, enabled=use_persistence)
policy_persistence = PolicyPersistence(
additional_persistence,
enabled=use_persistence,
mode=self.config.policy_persistence_mode,
)
if use_persistence:
log.info(f"Persistence directory: {os.path.abspath(persistence_dir)}")
self.save(persistence_dir)
# initialize logger
full_config = self._build_config_dict()
full_config.update(envs.info())
logger: TLogger
if use_persistence:
logger = self.logger_factory.create_logger(
log_dir=persistence_dir,
experiment_name=experiment_name,
run_id=logger_run_id,
config_dict=full_config,
)
else:
logger = LazyLogger()
# create policy and collectors
log.info("Creating policy")
policy = self.agent_factory.create_policy(envs, self.config.device)
log.info("Creating collectors")
train_collector, test_collector = self.agent_factory.create_train_test_collector(
policy,
envs,
)
# create context object with all relevant instances (except trainer; added later)
world = World(
envs=envs,
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
logger=logger,
persist_directory=persistence_dir,
restore_directory=self.config.policy_restore_directory,
)
# restore policy parameters if applicable
if self.config.policy_restore_directory:
policy_persistence.restore(
policy,
world,
self.config.device,
)
# train policy
log.info("Starting training")
trainer_result: InfoStats | None = None
if self.config.train:
trainer = self.agent_factory.create_trainer(world, policy_persistence)
world.trainer = trainer
trainer_result = trainer.run()
log.info(f"Training result:\n{pformat(trainer_result)}")
# watch agent performance
if self.config.watch:
assert envs.watch_env is not None
log.info("Watching agent performance")
self._watch_agent(
self.config.watch_num_episodes,
policy,
envs.watch_env,
self.config.watch_render,
)
return ExperimentResult(world=world, trainer_result=trainer_result)
@staticmethod
def _watch_agent(
num_episodes: int,
policy: BasePolicy,
env: BaseVectorEnv,
render: float,
) -> None:
policy.eval()
collector = Collector(policy, env)
result = collector.collect(n_episode=num_episodes, render=render)
assert result.returns_stat is not None # for mypy
assert result.lens_stat is not None # for mypy
log.info(
f"Watched episodes: mean reward={result.returns_stat.mean}, mean episode length={result.lens_stat.mean}",
)
[docs]
class ExperimentBuilder:
def __init__(
self,
env_factory: EnvFactory,
experiment_config: ExperimentConfig | None = None,
sampling_config: SamplingConfig | None = None,
):
if experiment_config is None:
experiment_config = ExperimentConfig()
if sampling_config is None:
sampling_config = SamplingConfig()
self._config = experiment_config
self._env_factory = env_factory
self._sampling_config = sampling_config
self._logger_factory: LoggerFactory | None = None
self._optim_factory: OptimizerFactory | None = None
self._policy_wrapper_factory: PolicyWrapperFactory | None = None
self._trainer_callbacks: TrainerCallbacks = TrainerCallbacks()
[docs]
def with_logger_factory(self, logger_factory: LoggerFactory) -> Self:
"""Allows to customize the logger factory to use.
If this method is not called, the default logger factory :class:`LoggerFactoryDefault` will be used.
:param logger_factory: the factory to use
:return: the builder
"""
self._logger_factory = logger_factory
return self
[docs]
def with_policy_wrapper_factory(self, policy_wrapper_factory: PolicyWrapperFactory) -> Self:
"""Allows to define a wrapper around the policy that is created, extending the original policy.
:param policy_wrapper_factory: the factory for the wrapper
:return: the builder
"""
self._policy_wrapper_factory = policy_wrapper_factory
return self
[docs]
def with_optim_factory(self, optim_factory: OptimizerFactory) -> Self:
"""Allows to customize the gradient-based optimizer to use.
By default, :class:`OptimizerFactoryAdam` will be used with default parameters.
:param optim_factory: the optimizer factory
:return: the builder
"""
self._optim_factory = optim_factory
return self
[docs]
def with_optim_factory_default(
self,
betas: tuple[float, float] = (0.9, 0.999),
eps: float = 1e-08,
weight_decay: float = 0,
) -> Self:
"""Configures the use of the default optimizer, Adam, with the given parameters.
:param betas: coefficients used for computing running averages of gradient and its square
:param eps: term added to the denominator to improve numerical stability
:param weight_decay: weight decay (L2 penalty)
:return: the builder
"""
self._optim_factory = OptimizerFactoryAdam(betas=betas, eps=eps, weight_decay=weight_decay)
return self
[docs]
def with_epoch_train_callback(self, callback: EpochTrainCallback) -> Self:
"""Allows to define a callback function which is called at the beginning of every epoch during training.
:param callback: the callback
:return: the builder
"""
self._trainer_callbacks.epoch_train_callback = callback
return self
[docs]
def with_epoch_test_callback(self, callback: EpochTestCallback) -> Self:
"""Allows to define a callback function which is called at the beginning of testing in each epoch.
:param callback: the callback
:return: the builder
"""
self._trainer_callbacks.epoch_test_callback = callback
return self
[docs]
def with_epoch_stop_callback(self, callback: EpochStopCallback) -> Self:
"""Allows to define a callback that decides whether training shall stop early.
The callback receives the undiscounted returns of the testing result.
:param callback: the callback
:return: the builder
"""
self._trainer_callbacks.epoch_stop_callback = callback
return self
@abstractmethod
def _create_agent_factory(self) -> AgentFactory:
pass
def _get_optim_factory(self) -> OptimizerFactory:
if self._optim_factory is None:
return OptimizerFactoryAdam()
else:
return self._optim_factory
[docs]
def build(self) -> Experiment:
"""Creates the experiment based on the options specified via this builder.
:return: the experiment
"""
agent_factory = self._create_agent_factory()
agent_factory.set_trainer_callbacks(self._trainer_callbacks)
if self._policy_wrapper_factory:
agent_factory.set_policy_wrapper_factory(self._policy_wrapper_factory)
experiment: Experiment = Experiment(
self._config,
self._env_factory,
agent_factory,
self._sampling_config,
self._logger_factory,
)
return experiment
class _BuilderMixinActorFactory(ActorFutureProviderProtocol):
def __init__(self, continuous_actor_type: ContinuousActorType):
self._continuous_actor_type = continuous_actor_type
self._actor_future = ActorFuture()
self._actor_factory: ActorFactory | None = None
def with_actor_factory(self, actor_factory: ActorFactory) -> Self:
"""Allows to customize the actor component via the specification of a factory.
If this function is not called, a default actor factory (with default parameters) will be used.
:param actor_factory: the factory to use for the creation of the actor network
:return: the builder
"""
self._actor_factory = actor_factory
return self
def _with_actor_factory_default(
self,
hidden_sizes: Sequence[int],
hidden_activation: ModuleType = torch.nn.ReLU,
continuous_unbounded: bool = False,
continuous_conditioned_sigma: bool = False,
) -> Self:
"""Adds a default actor factory with the given parameters.
:param hidden_sizes: the sequence of hidden dimensions to use in the network structure
:param continuous_unbounded: whether, for continuous action spaces, to apply tanh activation on final logits
:param continuous_conditioned_sigma: whether, for continuous action spaces, the standard deviation of continuous actions (sigma)
shall be computed from the input; if False, sigma is an independent parameter.
:return: the builder
"""
self._actor_factory = ActorFactoryDefault(
self._continuous_actor_type,
hidden_sizes,
hidden_activation=hidden_activation,
continuous_unbounded=continuous_unbounded,
continuous_conditioned_sigma=continuous_conditioned_sigma,
)
return self
def get_actor_future(self) -> ActorFuture:
""":return: an object, which, in the future, will contain the actor instance that is created for the experiment."""
return self._actor_future
def _get_actor_factory(self) -> ActorFactory:
actor_factory: ActorFactory
if self._actor_factory is None:
actor_factory = ActorFactoryDefault(self._continuous_actor_type)
else:
actor_factory = self._actor_factory
return ActorFactoryTransientStorageDecorator(actor_factory, self._actor_future)
class _BuilderMixinActorFactory_ContinuousGaussian(_BuilderMixinActorFactory):
"""Specialization of the actor mixin where, in the continuous case, the actor component outputs Gaussian distribution parameters."""
def __init__(self) -> None:
super().__init__(ContinuousActorType.GAUSSIAN)
def with_actor_factory_default(
self,
hidden_sizes: Sequence[int],
hidden_activation: ModuleType = torch.nn.ReLU,
continuous_unbounded: bool = False,
continuous_conditioned_sigma: bool = False,
) -> Self:
"""Defines use of the default actor factory, allowing its parameters it to be customized.
The default actor factory uses an MLP-style architecture.
:param hidden_sizes: dimensions of hidden layers used by the network
:param hidden_activation: the activation function to use for hidden layers
:param continuous_unbounded: whether, for continuous action spaces, to apply tanh activation on final logits
:param continuous_conditioned_sigma: whether, for continuous action spaces, the standard deviation of continuous actions (sigma)
shall be computed from the input; if False, sigma is an independent parameter.
:return: the builder
"""
return super()._with_actor_factory_default(
hidden_sizes,
hidden_activation=hidden_activation,
continuous_unbounded=continuous_unbounded,
continuous_conditioned_sigma=continuous_conditioned_sigma,
)
class _BuilderMixinActorFactory_ContinuousDeterministic(_BuilderMixinActorFactory):
"""Specialization of the actor mixin where, in the continuous case, the actor uses a deterministic policy."""
def __init__(self) -> None:
super().__init__(ContinuousActorType.DETERMINISTIC)
def with_actor_factory_default(
self,
hidden_sizes: Sequence[int],
hidden_activation: ModuleType = torch.nn.ReLU,
) -> Self:
"""Defines use of the default actor factory, allowing its parameters it to be customized.
The default actor factory uses an MLP-style architecture.
:param hidden_sizes: dimensions of hidden layers used by the network
:param hidden_activation: the activation function to use for hidden layers
:return: the builder
"""
return super()._with_actor_factory_default(hidden_sizes, hidden_activation)
class _BuilderMixinCriticsFactory:
def __init__(self, num_critics: int, actor_future_provider: ActorFutureProviderProtocol):
self._actor_future_provider = actor_future_provider
self._critic_factories: list[CriticFactory | None] = [None] * num_critics
def _with_critic_factory(self, idx: int, critic_factory: CriticFactory) -> Self:
self._critic_factories[idx] = critic_factory
return self
def _with_critic_factory_default(
self,
idx: int,
hidden_sizes: Sequence[int],
hidden_activation: ModuleType = torch.nn.ReLU,
) -> Self:
self._critic_factories[idx] = CriticFactoryDefault(
hidden_sizes,
hidden_activation=hidden_activation,
)
return self
def _with_critic_factory_use_actor(self, idx: int) -> Self:
self._critic_factories[idx] = CriticFactoryReuseActor(
self._actor_future_provider.get_actor_future(),
)
return self
def _get_critic_factory(self, idx: int) -> CriticFactory:
factory = self._critic_factories[idx]
if factory is None:
return CriticFactoryDefault()
else:
return factory
class _BuilderMixinSingleCriticFactory(_BuilderMixinCriticsFactory):
def __init__(self, actor_future_provider: ActorFutureProviderProtocol) -> None:
super().__init__(1, actor_future_provider)
def with_critic_factory(self, critic_factory: CriticFactory) -> Self:
"""Specifies that the given factory shall be used for the critic.
:param critic_factory: the critic factory
:return: the builder
"""
self._with_critic_factory(0, critic_factory)
return self
def with_critic_factory_default(
self,
hidden_sizes: Sequence[int] = CriticFactoryDefault.DEFAULT_HIDDEN_SIZES,
hidden_activation: ModuleType = torch.nn.ReLU,
) -> Self:
"""Makes the critic use the default, MLP-style architecture with the given parameters.
:param hidden_sizes: the sequence of dimensions to use in hidden layers of the network
:param hidden_activation: the activation function to use for hidden layers
:return: the builder
"""
self._with_critic_factory_default(0, hidden_sizes, hidden_activation)
return self
class _BuilderMixinSingleCriticCanUseActorFactory(_BuilderMixinSingleCriticFactory):
def __init__(self, actor_future_provider: ActorFutureProviderProtocol) -> None:
super().__init__(actor_future_provider)
def with_critic_factory_use_actor(self) -> Self:
"""Makes the first critic reuse the actor's preprocessing network (parameter sharing)."""
return self._with_critic_factory_use_actor(0)
class _BuilderMixinDualCriticFactory(_BuilderMixinCriticsFactory):
def __init__(self, actor_future_provider: ActorFutureProviderProtocol) -> None:
super().__init__(2, actor_future_provider)
def with_common_critic_factory(self, critic_factory: CriticFactory) -> Self:
"""Specifies that the given factory shall be used for both critics.
:param critic_factory: the critic factory
:return: the builder
"""
for i in range(len(self._critic_factories)):
self._with_critic_factory(i, critic_factory)
return self
def with_common_critic_factory_default(
self,
hidden_sizes: Sequence[int] = CriticFactoryDefault.DEFAULT_HIDDEN_SIZES,
hidden_activation: ModuleType = torch.nn.ReLU,
) -> Self:
"""Makes both critics use the default, MLP-style architecture with the given parameters.
:param hidden_sizes: the sequence of dimensions to use in hidden layers of the network
:param hidden_activation: the activation function to use for hidden layers
:return: the builder
"""
for i in range(len(self._critic_factories)):
self._with_critic_factory_default(i, hidden_sizes, hidden_activation)
return self
def with_common_critic_factory_use_actor(self) -> Self:
"""Makes both critics reuse the actor's preprocessing network (parameter sharing)."""
for i in range(len(self._critic_factories)):
self._with_critic_factory_use_actor(i)
return self
def with_critic1_factory(self, critic_factory: CriticFactory) -> Self:
"""Specifies that the given factory shall be used for the first critic.
:param critic_factory: the critic factory
:return: the builder
"""
self._with_critic_factory(0, critic_factory)
return self
def with_critic1_factory_default(
self,
hidden_sizes: Sequence[int] = CriticFactoryDefault.DEFAULT_HIDDEN_SIZES,
hidden_activation: ModuleType = torch.nn.ReLU,
) -> Self:
"""Makes the first critic use the default, MLP-style architecture with the given parameters.
:param hidden_sizes: the sequence of dimensions to use in hidden layers of the network
:param hidden_activation: the activation function to use for hidden layers
:return: the builder
"""
self._with_critic_factory_default(0, hidden_sizes, hidden_activation)
return self
def with_critic1_factory_use_actor(self) -> Self:
"""Makes the first critic reuse the actor's preprocessing network (parameter sharing)."""
return self._with_critic_factory_use_actor(0)
def with_critic2_factory(self, critic_factory: CriticFactory) -> Self:
"""Specifies that the given factory shall be used for the second critic.
:param critic_factory: the critic factory
:return: the builder
"""
self._with_critic_factory(1, critic_factory)
return self
def with_critic2_factory_default(
self,
hidden_sizes: Sequence[int] = CriticFactoryDefault.DEFAULT_HIDDEN_SIZES,
hidden_activation: ModuleType = torch.nn.ReLU,
) -> Self:
"""Makes the second critic use the default, MLP-style architecture with the given parameters.
:param hidden_sizes: the sequence of dimensions to use in hidden layers of the network
:param hidden_activation: the activation function to use for hidden layers
:return: the builder
"""
self._with_critic_factory_default(1, hidden_sizes, hidden_activation)
return self
def with_critic2_factory_use_actor(self) -> Self:
"""Makes the first critic reuse the actor's preprocessing network (parameter sharing)."""
return self._with_critic_factory_use_actor(1)
class _BuilderMixinCriticEnsembleFactory:
def __init__(self) -> None:
self.critic_ensemble_factory: CriticEnsembleFactory | None = None
def with_critic_ensemble_factory(self, factory: CriticEnsembleFactory) -> Self:
"""Specifies that the given factory shall be used for the critic ensemble.
If unspecified, the default factory (:class:`CriticEnsembleFactoryDefault`) is used.
:param factory: the critic ensemble factory
:return: the builder
"""
self.critic_ensemble_factory = factory
return self
def with_critic_ensemble_factory_default(
self,
hidden_sizes: Sequence[int] = CriticFactoryDefault.DEFAULT_HIDDEN_SIZES,
) -> Self:
"""Allows to customize the parameters of the default critic ensemble factory.
:param hidden_sizes: the sequence of sizes of hidden layers in the network architecture
:return: the builder
"""
self.critic_ensemble_factory = CriticEnsembleFactoryDefault(hidden_sizes)
return self
def _get_critic_ensemble_factory(self) -> CriticEnsembleFactory:
if self.critic_ensemble_factory is None:
return CriticEnsembleFactoryDefault()
else:
return self.critic_ensemble_factory
[docs]
class PGExperimentBuilder(
ExperimentBuilder,
_BuilderMixinActorFactory_ContinuousGaussian,
):
def __init__(
self,
env_factory: EnvFactory,
experiment_config: ExperimentConfig | None = None,
sampling_config: SamplingConfig | None = None,
):
super().__init__(env_factory, experiment_config, sampling_config)
_BuilderMixinActorFactory_ContinuousGaussian.__init__(self)
self._params: PGParams = PGParams()
self._env_config = None
[docs]
def with_pg_params(self, params: PGParams) -> Self:
self._params = params
return self
def _create_agent_factory(self) -> AgentFactory:
return PGAgentFactory(
self._params,
self._sampling_config,
self._get_actor_factory(),
self._get_optim_factory(),
)
[docs]
class A2CExperimentBuilder(
ExperimentBuilder,
_BuilderMixinActorFactory_ContinuousGaussian,
_BuilderMixinSingleCriticCanUseActorFactory,
):
def __init__(
self,
env_factory: EnvFactory,
experiment_config: ExperimentConfig | None = None,
sampling_config: SamplingConfig | None = None,
):
super().__init__(env_factory, experiment_config, sampling_config)
_BuilderMixinActorFactory_ContinuousGaussian.__init__(self)
_BuilderMixinSingleCriticCanUseActorFactory.__init__(self, self)
self._params: A2CParams = A2CParams()
self._env_config = None
[docs]
def with_a2c_params(self, params: A2CParams) -> Self:
self._params = params
return self
def _create_agent_factory(self) -> AgentFactory:
return A2CAgentFactory(
self._params,
self._sampling_config,
self._get_actor_factory(),
self._get_critic_factory(0),
self._get_optim_factory(),
)
[docs]
class PPOExperimentBuilder(
ExperimentBuilder,
_BuilderMixinActorFactory_ContinuousGaussian,
_BuilderMixinSingleCriticCanUseActorFactory,
):
def __init__(
self,
env_factory: EnvFactory,
experiment_config: ExperimentConfig | None = None,
sampling_config: SamplingConfig | None = None,
):
super().__init__(env_factory, experiment_config, sampling_config)
_BuilderMixinActorFactory_ContinuousGaussian.__init__(self)
_BuilderMixinSingleCriticCanUseActorFactory.__init__(self, self)
self._params: PPOParams = PPOParams()
[docs]
def with_ppo_params(self, params: PPOParams) -> Self:
self._params = params
return self
def _create_agent_factory(self) -> AgentFactory:
return PPOAgentFactory(
self._params,
self._sampling_config,
self._get_actor_factory(),
self._get_critic_factory(0),
self._get_optim_factory(),
)
[docs]
class NPGExperimentBuilder(
ExperimentBuilder,
_BuilderMixinActorFactory_ContinuousGaussian,
_BuilderMixinSingleCriticCanUseActorFactory,
):
def __init__(
self,
env_factory: EnvFactory,
experiment_config: ExperimentConfig | None = None,
sampling_config: SamplingConfig | None = None,
):
super().__init__(env_factory, experiment_config, sampling_config)
_BuilderMixinActorFactory_ContinuousGaussian.__init__(self)
_BuilderMixinSingleCriticCanUseActorFactory.__init__(self, self)
self._params: NPGParams = NPGParams()
[docs]
def with_npg_params(self, params: NPGParams) -> Self:
self._params = params
return self
def _create_agent_factory(self) -> AgentFactory:
return NPGAgentFactory(
self._params,
self._sampling_config,
self._get_actor_factory(),
self._get_critic_factory(0),
self._get_optim_factory(),
)
[docs]
class TRPOExperimentBuilder(
ExperimentBuilder,
_BuilderMixinActorFactory_ContinuousGaussian,
_BuilderMixinSingleCriticCanUseActorFactory,
):
def __init__(
self,
env_factory: EnvFactory,
experiment_config: ExperimentConfig | None = None,
sampling_config: SamplingConfig | None = None,
):
super().__init__(env_factory, experiment_config, sampling_config)
_BuilderMixinActorFactory_ContinuousGaussian.__init__(self)
_BuilderMixinSingleCriticCanUseActorFactory.__init__(self, self)
self._params: TRPOParams = TRPOParams()
[docs]
def with_trpo_params(self, params: TRPOParams) -> Self:
self._params = params
return self
def _create_agent_factory(self) -> AgentFactory:
return TRPOAgentFactory(
self._params,
self._sampling_config,
self._get_actor_factory(),
self._get_critic_factory(0),
self._get_optim_factory(),
)
[docs]
class DQNExperimentBuilder(
ExperimentBuilder,
):
def __init__(
self,
env_factory: EnvFactory,
experiment_config: ExperimentConfig | None = None,
sampling_config: SamplingConfig | None = None,
):
super().__init__(env_factory, experiment_config, sampling_config)
self._params: DQNParams = DQNParams()
self._model_factory: IntermediateModuleFactory = IntermediateModuleFactoryFromActorFactory(
ActorFactoryDefault(ContinuousActorType.UNSUPPORTED, discrete_softmax=False),
)
[docs]
def with_dqn_params(self, params: DQNParams) -> Self:
self._params = params
return self
[docs]
def with_model_factory(self, module_factory: IntermediateModuleFactory) -> Self:
""":param module_factory: factory for a module which maps environment observations to a vector of Q-values (one for each action)
:return: the builder
"""
self._model_factory = module_factory
return self
[docs]
def with_model_factory_default(
self,
hidden_sizes: Sequence[int],
hidden_activation: ModuleType = torch.nn.ReLU,
) -> Self:
"""Allows to configure the default factory for the model of the Q function, which maps environment observations to a vector of
Q-values (one for each action). The default model is a multi-layer perceptron.
:param hidden_sizes: the sequence of dimensions used for hidden layers
:param hidden_activation: the activation function to use for hidden layers (not used for the output layer)
:return: the builder
"""
self._model_factory = IntermediateModuleFactoryFromActorFactory(
ActorFactoryDefault(
ContinuousActorType.UNSUPPORTED,
hidden_sizes=hidden_sizes,
hidden_activation=hidden_activation,
discrete_softmax=False,
),
)
return self
def _create_agent_factory(self) -> AgentFactory:
return DQNAgentFactory(
self._params,
self._sampling_config,
self._model_factory,
self._get_optim_factory(),
)
[docs]
class IQNExperimentBuilder(ExperimentBuilder):
def __init__(
self,
env_factory: EnvFactory,
experiment_config: ExperimentConfig | None = None,
sampling_config: SamplingConfig | None = None,
):
super().__init__(env_factory, experiment_config, sampling_config)
self._params: IQNParams = IQNParams()
self._preprocess_network_factory: IntermediateModuleFactory = (
IntermediateModuleFactoryFromActorFactory(
ActorFactoryDefault(ContinuousActorType.UNSUPPORTED, discrete_softmax=False),
)
)
[docs]
def with_iqn_params(self, params: IQNParams) -> Self:
self._params = params
return self
[docs]
def with_preprocess_network_factory(self, module_factory: IntermediateModuleFactory) -> Self:
self._preprocess_network_factory = module_factory
return self
def _create_agent_factory(self) -> AgentFactory:
model_factory = ImplicitQuantileNetworkFactory(
self._preprocess_network_factory,
hidden_sizes=self._params.hidden_sizes,
num_cosines=self._params.num_cosines,
)
return IQNAgentFactory(
self._params,
self._sampling_config,
model_factory,
self._get_optim_factory(),
)
[docs]
class DDPGExperimentBuilder(
ExperimentBuilder,
_BuilderMixinActorFactory_ContinuousDeterministic,
_BuilderMixinSingleCriticCanUseActorFactory,
):
def __init__(
self,
env_factory: EnvFactory,
experiment_config: ExperimentConfig | None = None,
sampling_config: SamplingConfig | None = None,
):
super().__init__(env_factory, experiment_config, sampling_config)
_BuilderMixinActorFactory_ContinuousDeterministic.__init__(self)
_BuilderMixinSingleCriticCanUseActorFactory.__init__(self, self)
self._params: DDPGParams = DDPGParams()
[docs]
def with_ddpg_params(self, params: DDPGParams) -> Self:
self._params = params
return self
def _create_agent_factory(self) -> AgentFactory:
return DDPGAgentFactory(
self._params,
self._sampling_config,
self._get_actor_factory(),
self._get_critic_factory(0),
self._get_optim_factory(),
)
[docs]
class REDQExperimentBuilder(
ExperimentBuilder,
_BuilderMixinActorFactory_ContinuousGaussian,
_BuilderMixinCriticEnsembleFactory,
):
def __init__(
self,
env_factory: EnvFactory,
experiment_config: ExperimentConfig | None = None,
sampling_config: SamplingConfig | None = None,
):
super().__init__(env_factory, experiment_config, sampling_config)
_BuilderMixinActorFactory_ContinuousGaussian.__init__(self)
_BuilderMixinCriticEnsembleFactory.__init__(self)
self._params: REDQParams = REDQParams()
[docs]
def with_redq_params(self, params: REDQParams) -> Self:
self._params = params
return self
def _create_agent_factory(self) -> AgentFactory:
return REDQAgentFactory(
self._params,
self._sampling_config,
self._get_actor_factory(),
self._get_critic_ensemble_factory(),
self._get_optim_factory(),
)
[docs]
class SACExperimentBuilder(
ExperimentBuilder,
_BuilderMixinActorFactory_ContinuousGaussian,
_BuilderMixinDualCriticFactory,
):
def __init__(
self,
env_factory: EnvFactory,
experiment_config: ExperimentConfig | None = None,
sampling_config: SamplingConfig | None = None,
):
super().__init__(env_factory, experiment_config, sampling_config)
_BuilderMixinActorFactory_ContinuousGaussian.__init__(self)
_BuilderMixinDualCriticFactory.__init__(self, self)
self._params: SACParams = SACParams()
[docs]
def with_sac_params(self, params: SACParams) -> Self:
self._params = params
return self
def _create_agent_factory(self) -> AgentFactory:
return SACAgentFactory(
self._params,
self._sampling_config,
self._get_actor_factory(),
self._get_critic_factory(0),
self._get_critic_factory(1),
self._get_optim_factory(),
)
[docs]
class DiscreteSACExperimentBuilder(
ExperimentBuilder,
_BuilderMixinActorFactory,
_BuilderMixinDualCriticFactory,
):
def __init__(
self,
env_factory: EnvFactory,
experiment_config: ExperimentConfig | None = None,
sampling_config: SamplingConfig | None = None,
):
super().__init__(env_factory, experiment_config, sampling_config)
_BuilderMixinActorFactory.__init__(self, ContinuousActorType.UNSUPPORTED)
_BuilderMixinDualCriticFactory.__init__(self, self)
self._params: DiscreteSACParams = DiscreteSACParams()
[docs]
def with_sac_params(self, params: DiscreteSACParams) -> Self:
self._params = params
return self
def _create_agent_factory(self) -> AgentFactory:
return DiscreteSACAgentFactory(
self._params,
self._sampling_config,
self._get_actor_factory(),
self._get_critic_factory(0),
self._get_critic_factory(1),
self._get_optim_factory(),
)
[docs]
class TD3ExperimentBuilder(
ExperimentBuilder,
_BuilderMixinActorFactory_ContinuousDeterministic,
_BuilderMixinDualCriticFactory,
):
def __init__(
self,
env_factory: EnvFactory,
experiment_config: ExperimentConfig | None = None,
sampling_config: SamplingConfig | None = None,
):
super().__init__(env_factory, experiment_config, sampling_config)
_BuilderMixinActorFactory_ContinuousDeterministic.__init__(self)
_BuilderMixinDualCriticFactory.__init__(self, self)
self._params: TD3Params = TD3Params()
[docs]
def with_td3_params(self, params: TD3Params) -> Self:
self._params = params
return self
def _create_agent_factory(self) -> AgentFactory:
return TD3AgentFactory(
self._params,
self._sampling_config,
self._get_actor_factory(),
self._get_critic_factory(0),
self._get_critic_factory(1),
self._get_optim_factory(),
)