Skip to main content
Back to top
Ctrl
+
K
Welcome to Tianshou!
Tutorials
Deep Q Network
Basic concepts in Tianshou
Understand Batch
RL against random policy opponent with PettingZoo
Logging Experiments
Benchmark
Cheat Sheet
Notebook Tutorials
Overview
Batch
Buffer
Vectorized Environment
Policy
Collector
Trainer
Experiment
Tianshou API Reference
data
batch
collector
stats
types
buffer
base
cached
her
manager
prio
vecbuf
utils
converter
segtree
env
gym_wrappers
pettingzoo_env
utils
venv_wrappers
venvs
worker
base
dummy
ray
subproc
evaluation
launcher
rliable_evaluation_hl
exploration
random
highlevel
agent
config
env
experiment
logger
optim
persistence
trainer
world
module
actor
core
critic
intermediate
module_opt
special
params
alpha
dist_fn
env_param
lr_scheduler
noise
policy_params
policy_wrapper
policy
base
random
imitation
base
bcq
cql
discrete_bcq
discrete_cql
discrete_crr
gail
td3_bc
modelbased
icm
psrl
modelfree
a2c
bdq
c51
ddpg
discrete_sac
dqn
fqf
iqn
npg
pg
ppo
qrdqn
rainbow
redq
sac
td3
trpo
multiagent
mapolicy
trainer
base
utils
utils
conversion
logging
lr_scheduler
optim
print
progress_bar
space_info
statistics
torch_utils
warning
logger
base
tensorboard
wandb
net
common
continuous
discrete
Contributing to Tianshou
Contributors
.rst
.pdf
params
params
#
alpha
env_param
lr_scheduler
policy_wrapper
dist_fn
policy_params
noise