Source code for tianshou.data.buffer.cached

import numpy as np

from tianshou.data import ReplayBuffer, ReplayBufferManager
from tianshou.data.types import RolloutBatchProtocol


[docs] class CachedReplayBuffer(ReplayBufferManager): """CachedReplayBuffer contains a given main buffer and n cached buffers, ``cached_buffer_num * ReplayBuffer(size=max_episode_length)``. The memory layout is: ``| main_buffer | cached_buffers[0] | cached_buffers[1] | ... | cached_buffers[cached_buffer_num - 1] |``. The data is first stored in cached buffers. When an episode is terminated, the data will move to the main buffer and the corresponding cached buffer will be reset. :param main_buffer: the main buffer whose ``.update()`` function behaves normally. :param cached_buffer_num: number of ReplayBuffer needs to be created for cached buffer. :param max_episode_length: the maximum length of one episode, used in each cached buffer's maxsize. .. seealso:: Please refer to :class:`~tianshou.data.ReplayBuffer` for other APIs' usage. """ def __init__( self, main_buffer: ReplayBuffer, cached_buffer_num: int, max_episode_length: int, ) -> None: assert cached_buffer_num > 0 assert max_episode_length > 0 assert isinstance(main_buffer, ReplayBuffer) kwargs = main_buffer.options buffers = [main_buffer] + [ ReplayBuffer(max_episode_length, **kwargs) for _ in range(cached_buffer_num) ] super().__init__(buffer_list=buffers) self.main_buffer = self.buffers[0] self.cached_buffers = self.buffers[1:] self.cached_buffer_num = cached_buffer_num
[docs] def add( self, batch: RolloutBatchProtocol, buffer_ids: np.ndarray | list[int] | None = None, ) -> tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: """Add a batch of data into CachedReplayBuffer. Each of the data's length (first dimension) must equal to the length of buffer_ids. By default the buffer_ids is [0, 1, ..., cached_buffer_num - 1]. Return (current_index, episode_reward, episode_length, episode_start_index) with each of the shape (len(buffer_ids), ...), where (current_index[i], episode_reward[i], episode_length[i], episode_start_index[i]) refers to the cached_buffer_ids[i]th cached buffer's corresponding episode result. """ if buffer_ids is None: cached_buffer_ids = np.arange(1, 1 + self.cached_buffer_num) else: # make sure it is np.ndarray, +1 means it's never the main buffer cached_buffer_ids = np.asarray(buffer_ids) + 1 insertion_idx, ep_return, ep_len, ep_start_idx = super().add( batch, buffer_ids=cached_buffer_ids, ) # find the terminated episode, move data from cached buf to main buf updated_insertion_idx, updated_ep_start_idx = [], [] done = np.logical_or(batch.terminated, batch.truncated) for buffer_idx in cached_buffer_ids[done]: index = self.main_buffer.update(self.buffers[buffer_idx]) if len(index) == 0: # unsuccessful move, replace with -1 index = [-1] updated_ep_start_idx.append(index[0]) updated_insertion_idx.append(index[-1]) self.buffers[buffer_idx].reset() self._lengths[0] = len(self.main_buffer) self._lengths[buffer_idx] = 0 self.last_index[0] = index[-1] self.last_index[buffer_idx] = self._offset[buffer_idx] insertion_idx[done] = updated_insertion_idx ep_start_idx[done] = updated_ep_start_idx return insertion_idx, ep_return, ep_len, ep_start_idx